SVEUČILIŠTE U RIJECI GRAĐEVINSKI FAKULTET

Paulina Krolo

UTJECAJ PONAŠANJA VIJČANIH PRIKLJUČAKA NA POTRESNI ODZIV ČELIČNIH OKVIRA

DOKTORSKI RAD

Rijeka, 2017.

SVEUČILIŠTE U RIJECI GRAĐEVINSKI FAKULTET

Paulina Krolo

UTJECAJ PONAŠANJA VIJČANIH PRIKLJUČAKA NA POTRESNI ODZIV ČELIČNIH OKVIRA

DOKTORSKI RAD

Rijeka, 2017.

SVEUČILIŠTE U RIJECI GRAĐEVINSKI FAKULTET

Paulina Krolo

UTJECAJ PONAŠANJA VIJČANIH PRIKLJUČAKA NA POTRESNI ODZIV ČELIČNIH OKVIRA

DOKTORSKI RAD

Mentor: izv. prof. dr. sc. Davor Grandić Komentor: izv. prof. dr. sc. Mladen Bulić

Rijeka, 2017.

UNIVERSITY OF RIJEKA FACULTY OF CIVIL ENGINEERING

Paulina Krolo

INFLUENCE OF BOLTED JOINTS BEHAVIOUR ON SEISMIC RESPONSE OF STEEL FRAMES

DOCTORAL THESIS

Rijeka, 2017

Mentor: izv. prof. dr. sc. Davor Grandić Komentor: izv. prof. dr. sc. Mladen Bulić

Doktorski rad obranjen je dana_____na Građevinskom fakultetu Sveučilišta u Rijeci, pred povjerenstvom u sastavu:

- 1. izv. prof. dr. sc. Adriana Bjelanović, Građevinski fakultet Sveučilišta u Rijeci
- izv. prof. dr. sc. Mladen Bulić, Građevinski fakultet Sveučilišta u Rijeci
- izv. prof. dr. sc. Davor Skejić, Građevinski fakultet Sveučilišta u Zagrebu

ZAHVALA

Posebno se zahvaljujem svom mentoru, izv. prof. dr. sc. Davoru Grandiću koji mi je bio velika podrška, koji me vodio, poticao i savjetovao. Hvala mu na svom izdvojenom vremenu, trudu i strpljenju.

Hvala komentoru ízv. prof. dr. sc. Mladenu Bulíću na svím savjetíma í sugestíjama.

Hvala kolegi mr. sc. Željku Smolčiću koji mi je pomogao u realizaciji laboratorijskih ispitivanja.

Hvala prof. dr. sc. Gordanu Jeleniću i izv. prof. dr. sc. Adriani Bjelanović koji su na svoj poseban način doprinijeli realizaciji ovog doktorata.

Hvala izv.prof. dr. sc. Ivani Štimac Grandić na svim savjetima i pomoći na kraju doktorskog istraživanja.

Veliko hvala mom ocu Petru, majci Mirjani i bratu Miroslavu koji su me uvijek poticali i motivirali. Hvala im na svoj nesebičnoj ljubavi, brizi i pomoći.

Hvala baka Ivanki i dida Stipi koji su uvijek pomogli i uskakali kad je trebalo.

Najviše se zahvaljujem svome Stjepanu koji je sa mnom od samog početka doktorskog studija, koji me uvijek poticao i bio moj najveći oslonac. Hvala mu na razumijevanju, ljubavi i brizi oko Petre i Davida koji su bili moja najveća inspiracija. Pomisao na njih uvijek me gurala korak dalje. Njima posvećujem svoj doktorski rad. Doktorski rad nastao je kao rezultat istraživanja u okviru projekata:

- Razvoj istraživačke infrastrukture na kampusu Sveučilišta u Rijeci (RC.2.2.06-0001) koji je sufinanciran iz Europskog fonda za regionalni razvoj (EFRR) i Ministarstva znanosti, obrazovanja i sporta RH
- "Procjena oštećenja i ojačanje građevinskih konstrukcija" uz financijsku potporu Sveučilišta u Rijeci (broj 13.05.1.1.01)
- 3. "Razvoj konstrukcija povećane pouzdanosti s obzirom na potres" uz financijsku potporu Sveučilišta u Rijeci (broj 402-01/14-01/11)

SAŽETAK

U doktorskom radu izrađen je matematički model histerezne anvelope priključka s obostrano produljenom čelnom pločom u vijčanoj izvedbi. Model histerezne anvelope razvijen je s ciljem što realnije procjene ponašanja čeličnih okvira u potresu primjenom nelinearne statičke metode. Modelom su definirani omjeri između monotonih svojstava priključaka i svojstava priključaka pri cikličkom deformiranju. Definirani omjeri određeni su kao funkcija dvaju parametara; debljina čelne ploče i vertikalni razmak između redova vijaka na čelnoj ploči. Ponašanje okvira dobiveno primjenom novog modela histerezne anvelope priključaka. Rezultati nelinearnih dinamičkih proračuna na realne potrese primijenjeni su za verifikaciju rezultata ponašanja okvira dobivenih nelinearnom statičkom metodom. Svojstva priključaka pri nelinearnim dinamičkim proračunima modelirana su primjenom modificiranog Richard-Abbottovog modela koji uzima u obzir degradaciju čvrstoće i krutosti te problem uštipnuća histereznih petlji.

Za definiranje ponašanja priključka pod utjecajem potresnog djelovanja, izrađeni su numerički modeli primjenom metode konačnih elemenata. Modeli obuhvaćaju geometrijsku i materijalnu nelinearnost osnovnih dijelova priključka, prednapinjanje vijaka te kontakte između spojenih elemenata. Model je verificiran s rezultatima laboratorijskih ispitivanja dostupnih u literaturi.

Provedena su laboratorijska ispitivanja europskih mekih čelika S275 i S355 s ciljem utvrđivanja cikličkih svojstava. Kako bi se simulirao učinak promjenjivih deformacija koje su prisutne pri djelovanju potresa, odabran je eksperimentalni program po kojemu su provedena ciklička ispitivanja aksijalnim opterećivanjem uzoraka uz kontrolu pomaka pomične grede ispitnog stroja. Za dobivena ciklička svojstva priključaka provedena je kalibracija parametara prema Chabocheovom modelu koji uzima u obzir izotropno-kinematičko očvršćivanje čelika. Nakon dostizanja vlačne čvrstoće pri cikličkom djelovanju, modelirano je i oštećenje materijala s modelom loma. Ovakav model materijala koji obuhvaća očvršćivanje, degradaciju čvrstoće i krutosti te model oštećenja prvi put je ugrađen u model priključka.

KLJUČNE RIJEČI: model histerezne anvelope priključka, ciklička svojstva čelika, laboratorijska ispitivanja, Chabocheov model, model oštećenja čelika, priključak stupa i grede, potresni proračuni

SUMMARY

A new mathematical model of hysteresis envelope of extended end-plate bolted beamto-column joint was developed in this doctoral thesis. The realistic assessment of steel moment resisting frame behavior under earthquake action by using a nonlinear static analysis was the main goal of this hysteresis envelope model. The model defined the ratio between the monotonic and cyclic behavior of the joint. The ratios are defined as a function of two parameters; the thickness of the end-plate and the vertical spacing between bolt rows at the end-plate. Moment resisting frame behavior obtained by using the new model of hysteresis envelope of the joint was compared with moment resisting frame behavior which takes into account the monotonic properties of joints. The nonlinear dynamic analysis of frames under real earthquake by using time histories was served as a verification method. A modified Richard-Abbott model that takes into account the degradation of strength and stiffness as well as the problem of pinching used to model the behavior of joint.

In order to define the behavior of beam-to-column joint under earthquake action, a numerical finite element model was developed. The model takes into account geometric and material nonlinearities of the elementary parts of joint, preloaded bolts, and contacts between connected elements. The accuracy of the nonlinear finite element model was validated by experimental test available in references.

To determine the cyclical properties of European mild steel S275 and S355, the experimental testing was conducted. To simulate the effect of variable strains which occurring in the structure under earthquake action, an experimental displacement control test of specimens was performed. Calibration of steel hardening parameters was performed following the Chaboche procedure to define the cyclic behavior with variable strain ranges. The Chaboche model takes into account a combined isotropic-kinematic hardening of steel. After the ultimate tensile strength of steel under the cyclic action was reached, a model of steel takes into account damage initiation and fracture. Such steel model which includes material hardening, degradation of strength and stiffness and damage was for the first time applied in the numerical model of joint.

KEYWORDS: hysteresis envelope model of joint, cyclic behavior of steel, laboratory testing, Chaboche model, damage model of steel, beam-to-column joint, seismic analyses

SADRŽAJ

1	U	VOI	D		1
	1.1	Мо	tivacija i	straživanja	1
	1.2	Pre	egled por	našanja priključaka u potresu	3
	1.3	Hip	oteza i o	ciljevi istraživanja	. 15
	1.4	Ме	todologij	a istraživanja	. 15
	1.5	Sa	držaj doł	storskog rada	. 18
•	10		A ŽI\ / A NI		20
2	13		AZIVAN	JE CINLICNIH SVUJSTAVA CELINA	. 20
	2.1	Uv	od		. 20
	2.2	Lat	poratorijs	ka ispitivanja svojstava čelika	. 21
	2.	2.1	Odabi	r čelika za ispitivanje	. 21
	2.	2.2	Obliko	ovanje ispitnih uzoraka	. 22
	2.	2.3	Oprer	na za provođenje ispitivanja	. 24
	2.	2.4	Stand	ardna vlačna ispitivanja	. 25
	2.	2.5	Cikličł	ka ispitivanja	. 27
	2.3	Nu	meričke	simulacije cikličkog ponašanja čelika	. 38
	2.	3.1	Konst	itucijski modeli čelika	. 39
			2.3.1.1	Izotropno-kinematički model očvršćivanja	. 40
			2.3.1.2	Model oštećenja	. 44
	2.	3.2	Kalibr	acija parametara čelika	. 46
			2.3.2.1	Izotropno-kinematički parametri očvršćivanja	. 46
			2.3.2.2	Parametri oštećenja	. 52
3	IS	TR	AŽIVAN	JE CIKLIČKIH SVOJSTAVA PRIKLJUČAKA	. 57
-	3 1	1 hu	od		57
	3.1	NIII	ou moričko	simulacije priključaka	. 57
	J.Z	างน ว.1	Kolibr	acija pumoričkog modola priključka	. 00
	ວ. ວ	∠. ເ ດ ດ	Numo		. 04
	5.	2.2	2224	Coometrijska avojstva	. 09
			2.2.2.1	Svojstva materijala	. 70
			J.Z.Z.Z	Earmirania numariàkas madala a kanažnim alamantima	. 12
			J.Z.Z.J	rommanje numenckog modela s konachim elementima	. 13
			J.Z.Z.4	Nodeliranje kontaktnih područja	. 75
			3.2.2.5	Prednapinjanje visokovrijednih vijaka i protokol opterećenja	. 76

3	8.2.2.6 Rubni uvjeti i plan djelovanja opterećenja 8	1
3	3.2.2.7 Analiza rezultata numeričkih proračuna priključaka 8	2
3.3 Mate	ematički modeli ponašanja priključaka9	2
3.3.1	Matematički model za opis monotonog ponašanja priključaka	5
3.3.2	Matematički modeli za opis cikličkog ponašanja priključka	7
3	3.3.2.1 Matematički model histerezne anvelope	7
3	3.3.2.2 Modificirani Richard-Abbottov model	3
3	3.3.2.3 Kalibracija parametara modificiranog Richard-Abbottovog model	a
za ci	iklički odziv priključaka 10	8
	ΙΖΑ ΗΤΙΕΛΑ ΙΑ ΠΟΝΑČΑΝΙΑ ΜΗČΑΝΙΗ ΟΡΙΚΙ ΙΠČΑΚΑ ΝΑ	
	ZA UTJECAJA PONASANJA VIJCANIH PRIRLJUCARA NA	4
PUIKESNI		1
4.1 Potre	esni proračun okvira primjenom nelinearne statičke metode (Metoda N2	2)
113		_
4.1.1	Opis metode	3
4.1.2	Preporučene vrijednosti relativnog prigušenja	8
4.1.3	Definiranje potresnog opterečenja za nelinearnu statičku metodu 11	9
4.1.4	Podatci o konstrukciji	2
4.1.5	Analiza ponašanja okvira dobivenih nelinearnim statičkim proračunom	
(metod	om N2)	.6
4.2 Verit	fikacija ponašanja okvira nelinearnim dinamičkim proračunom	0
4.2.1	Definiranje potresnog opterecenja za nelinearnu dinamicku analizu. 13	1
4.2.2	Analiza ponasanja okvira dobivenin nelinearnim dinamickim	_
proracu		5
4.3 USp	bredba ponasanja okvira određenih nelinearnom statičkom i nelinearnom	m 4
апатіско	5m metodom	Ĩ
5 ZAKLJ	JUČCI I PRIJEDLOZI ZA BUDUĆA ISTRAŽIVANJA	-5
6 LITER	ATURA	.8
POPIS SLIK	A 15	4
POPIS TABI	LICA 15	8
	A. KONFIGURACIJA KONSTRUKCIJE	0
PRIVITAK B	3. DJELOVANJA NA KONSTRUKCIJU	2
ZIVUTUPIS		O

1 UVOD

1.1 Motivacija istraživanja

Čelični okviri (engl. moment resisting steel frames) su okviri koji horizontalne sile koje na njih djeluju prenose savijanjem komponenata od kojih su sastavljeni (stupovi i grede). Zbog svojih dobrih mehaničkih svojstava učestalo se primjenjuju u područjima jakih potresnih aktivnosti [1]. Uobičajena je praksa da se potresna energija koja se unese u konstrukciju tijekom potresa potroši nelinearnim ponašanjem konstrukcije, odnosno korištenjem njenih duktilnih svojstava [2]. Prema načelima potresnog inženjerstva, konstrukciju je potrebno tako projektirati da se na izabranim dijelovima konstrukcije dozvoli razvoj plastičnih deformacija odnosno formiranje duktilnih područja. Duktilna područja u konstrukciji trebaju omogućiti trošenje potresne energije cikličkim ponašanjem. Okvirne konstrukcije karakterizira veliki broj duktilnih područja, koje su uglavnom smještene na krajevima greda ili u priključcima greda i stupova te na donjim krajevima stupova uz oslonce okvira [3]. Nakon nekoliko ciklusa potresnog djelovanja, ta područja postaju dijelovi konstrukcije koji se plastično deformiraju. Mnoge znanstvene studije pokazale su da priključci imaju veliku sposobnost trošenja (disipacije) potresne energije s velikom čvrstoćom i krutosti [1, 4, 5, 6, 7, 8].

Definiranje utjecaja potresa na konstrukciju ovise o problemu koji se analizira. Učinci potresnog djelovanja mogu se odrediti primjenom ekvivalentnog statičkog djelovanja, kada je odziv konstrukcije takav da ne postoji značajan doprinos viših oblika osciliranja pri čemu se uzima utjecaj samo prvog oblika; modalnim proračunom spektrima odziva, koji se primjenjuje bez ograničenja za sve konstrukcije kod kojih postoji utjecaj viših oblika osciliranja na odziv konstrukcije; nelinearnom statičkom metodom postupnog guranja (engl. pushover) u kojoj se uzima utjecaj samo prvog tona te nelinearnim dinamičkim proračunom (engl. time history) pri kojemu se rabe zapisi potresa u vremenu. Primjena bilo koje od prethodno spomenutih metoda pokazuje veliku

osjetljivost rezultata na preciznosti definiranja geometrijskih i materijalnih svojstava okvira.

U tradicionalnom pristupu projektiranja čeličnih okvirnih konstrukcija, priključci stupova i greda se razmatraju kao zglobni bez ikakve otpornosti i krutosti ili pak kao potpuno kruti s punom otpornosti. Iako se primjenom takvog pristupa postupak proračuna konstrukcije značajno pojednostavnjuje, on ne opisuje njeno stvarno ponašanje. U stvarnosti su oba slučaja netočna i samo su granični slučajevi realnog ponašanja gdje je rotacijsko ponašanje priključaka najčešće u području između tih dvaju ekstrema. Učinak koji imaju djelomično nepopustljivi priključci u odnosu na krute ili zglobne priključke nije samo modificiranje pomaka nego i raspodjela i veličina unutarnjih sila u konstrukciji. Priključci imaju svoju stvarnu krutost, stoga se svrstavaju u djelomično nepopustljive te njihovo ponašanje ima značajan utjecaj na otpornost, krutost i stabilnost čitave konstrukcije kao i na trošenje potresne energije koja se unosi u konstrukciju tijekom potresa [9]. Stoga je preporučljivo u proračunu okvira uzeti u obzir stvarno ponašanje priključaka.

Iz aspekta potresnog proračuna primjenom nelinearne statičke metode N2, Nogueiro i suradnici, 2006. godine [10] prvi su analizirali ponašanje spregnutih okvira s djelomično nepopustljivim priključcima. Model okvira uzima u obzir ponašanje priključaka dobiveno monotonim ispitivanjem. Krolo i suradnici, 2014. i 2015. godine [9, 11, 12] daju usporedbu potresnog odziva čeličnog okvira primjenom nelinearne statičke metode za slučaj kada su priključci modelirani kao kruti te djelomično nepopustljivi. Stvarno ponašanje priključaka uzeto je u obzir u proračunu okvira na način da je za odabrani tip priključka provedena numerička simulacija monotonog savijanja koja kao rezultat daje monotonu krivulju odnosa momenta savijanja i rotacije priključka.

Ponašanje priključaka znatno se razlikuje pri monotonom i cikličkom djelovanju te se primjenom monotonih svojstava priključaka u potresnom proračunu ne može predvidjeti realno ponašanje okvira. Zbog toga je, za što realniju procjenu ponašanja okvira, neophodno poznavati ciklička svojstva priključaka. U tekstu koji slijedi dan je pregled i analiza dosadašnjih istraživanja vezanih za ponašanje priključaka u potresu te su prikazane usporedbe odziva priključka na monotono i cikličko djelovanje.

2

1.2 Pregled ponašanja priključaka u potresu

Primjena potpuno zavarenih čeličnih okvirnih konstrukcija u potresnim područjima dovodi se u pitanje, budući da su mnoge čelične konstrukcije doživjele oštećenje upravo na mjestima priključaka. Više od 150 građevina doživjelo je takav tip oštećenja u potresima Northridge, 1994 i Kobe, 1995. [4]. Oštećenja zavara nastala su uglavnom zbog uporabe male čvrstoće zavara u kombinaciji s brojnim drugim detaljima priključka i svojstvima materijala. Većina nastalih šteta, koje nisu uzrokovale rušenje konstrukcije, predstavljaju ozbiljan rizik u slučaju ponovnog djelovanja potresa. Popravak takvih oštećenja uključuje značajne troškove. U svijetu su provedena brojna istraživanja s ciljem boljeg proračuna, projektiranja i izvođenja takvih priključaka. Mnoga istraživanja proizašla su upravo nakon potresa Northridge, 1994. [13, 14, 15, 16] kojima je uglavnom analizirano ponašanje zavarenih priključaka.

Međutim, djelomično nepopustljivi vijčani priključci prepoznati su kao alternativa zavarenim priključcima. Interes za primjenom vijčanih priključaka u čeličnim konstrukcijama značajno je povećan zbog nesigurne i često slabije izvedbe zavarenih priključaka te zbog nižih troškova gradnje i jednostavnog procesa obrade. Vijčani priključci, posebno tipovi s čelnim pločama sve se više primjenjuju jer zahtijevaju manje nadzora i kraće vrijeme montaže u odnosu na zavarene [17].

Uobičajeni tipovi djelomično nepopustljivih vijčanih priključaka uključuju priključke s čelnim pločama (engl. end-plate joint) slika 1.1, te priključke s kutnicima (engl. top-and seat-angle joints and double web-angle joint), slika 1.2.

Slika 1.1 Priključci s čelnim pločama

Slika 1.2 Priključci s kutnicima

Njihova primjena prepoznata je u cijelom svijetu, međutim, među najčešće izvođenim priključcima u čeličnim okvirnim konstrukcijama u seizmičkim područjima, 90% priključaka su vijčani priključci s obostrano produljenom čelnom pločom te su kao takvi najpopularniji tip vijčanog priključka [18]. Popularnost ovog tipa priključka može se pripisati činjenici manjeg broja komponenata kojima treba rukovati pri ugradnji u odnosu na druge tipove priključaka [19] te njihova jednostavnost i ekonomičnost koja se odnosi na proračun, izradu i montažu [20]. Ovaj simetrični oblik priključka svojom geometrijom osigurava potrebna svojstva pod utjecajem potresnog djelovanja [1, 8, 22]. Priključci s kutnicima (naročito pojasnim) su zanemareni u Europi te bi i njima trebalo posvetiti više pozornosti [21].

Detalji priključaka s čelnom pločom mogu znatno varirati. Mnogi parametri utječu na njegovo ponašanje, kao što su promjer vijaka, broj i raspored vijaka, razmaci između vijaka, kvaliteta vijaka, dimenzije čelne ploče, ukrućenja hrpta stupa ili čelne ploče, veličina stupa i grede, prednapinjanje vijaka, granica popuštanja čelika, koeficijent proklizavanja između kontaktnih ploha itd. [23, 7]. Predviđanje ponašanja priključaka vrlo je složeno budući da je potrebno uzeti u obzir različita svojstva priključaka i materijala kao što su materijalna nelinearnost (plastično ponašanje, očvršćivanje materijala), geometrijska nelinearnost, interakcije između spojenih elemenata priključka, trenje, proklizavanje, utjecaj prednapinjanja vijaka te komplicirana geometrija priključka. Pod utjecajem potresnog djelovanja, njihovo ponašanje se dodatno komplicira zbog uzastopnih izmjena opterećenja i rasterećenja. Takvo ponašanje priključaka opisuje se histereznom krivuljom koja uključuje degradacije

čvrstoće i krutosti [24]. Poznavanje cikličkog ponašanja priključka je zbog toga od velikog značaja.

Provedena su brojna opsežna istraživanja na brojnim djelomično nepopustljivim vijčanim priključcima s ciljem procjene njihovog ponašanja pod utjecajem monotonog i cikličkog djelovanja. Najčešće korišteni modeli koji se primjenjuju za definiranje mehaničkih karakteristika priključka jesu: analitički, empirijski, laboratorijski, informativni, mehanički i numerički modeli [13]. Analitički modeli temelje se na primjeni ravnotežnih jednadžbi, jednadžbi kompatibilnosti te materijalnih konstitucijskih relacija pomoću kojih je moguće dobiti mehaničke karakteristike priključka. Empirijski modeli temelje se na empirijskim formulacijama koje povezuju parametre u obliku matematičkog odnosa momenata i rotacija na temelju geometrijskih i mehaničkih svojstava priključaka. Takve formulacije mogu se dobiti primjenom regresijske analize rezultata koji su dobiveni npr. eksperimentalnim ispitivanjima, parametarskim analizama iz numeričkih simulacija te primjenom analitičkih i mehaničkih modela. Informativni modeli koriste neuralne mreže (NN-Neural Networks). Mehanički modeli poznati su kao modeli s oprugama. Priključak se modelira sustavom sastavljenim od krutih i popustljivih komponenata. Za svaku se komponentu određuju karakteristike otpornosti i krutosti. Tada se dobivene karakteristike kombiniraju radi određivanja mehaničkih karakteristika cijelog priključka.

Najtočniji podatci o ponašanju priključka mogu se dobiti laboratorijskim ispitivanjima. Prva laboratorijska ispitivanja na priključcima proveli su Wilson i Moore, 1917. godine [25] za procjenu krutosti čeličnog priključka sa zakovicama. Nakon toga provedena su brojna ispitivanja na različitim tipovima priključaka te pri različitim vrstama djelovanja. Pregled dosadašnjih istraživanja koja su ovdje analizirana odnose se na laboratorijska ispitivanja cikličkih svojstava priključaka sa čelnom pločom.

Korol i suradnici, 1990. godine [8] provode laboratorijska istraživanja priključaka stupa i grede s obostrano produljenom čelnom pločom na utjecaje cikličkog djelovanja. U istraživanjima su analizirani učinci pojedinih komponenata (debljina čelne ploče, sila prednapinjanja vijaka, vitkost pojasnica stupa, ukrute hrpta stupa) na cjelokupno ponašanje priključka. Analizirane su dvije serije priključaka, prva koja uključuje pet uzoraka A-1 do A-5 i druga serija od dva priključka B-1 i B-2 u kojima su ugrađene jače grede. Histerezne krivulje za svih sedam uzoraka prikazane su u tablici 1.1. Na temelju

5

provedenih istraživanja zaključili su da se pravilnim oblikovanjem priključaka mogu osigurati dobra svojstva koja omogućuju njihovu primjenu u čeličnim okvirima koji su izloženi jakim potresnim aktivnostima.

Bernuzzi i suradnici, 1996. godine [26] su proveli istraživanje utjecaja oblika protokola opterećenja na degradaciju čvrstoće i krutosti priključaka EPBC-1 i EPBC-2. Nedostatak ovih istraživanja je što laboratorijski uzorci sadrže samo čelnu ploču i priključenu gredu.

Laboratorijska ispitivanja 15 ciklički opterećenih priključaka s obostrano produljenom čelnom pločom proveli su Adey i suradnici 2000. godine [1]. Analizirali su učinke dimenzije grede, rasporeda vijaka, debljine čelne ploče i ukruta te procesa zavarivanja na ponašanje priključaka. Ispitivanja su bila grupirana u tri serije ovisno o dimenzijama grede. Prva serija uzoraka su uzorci s malim gredama (S-1 do S-3), druga grupa su uzorci sa srednjim dimenzijama greda (M-1 do M-7) i grupa uzoraka sa velikim dimenzijama greda (L-1 do L-5). Prvih 11 uzoraka dimenzionirano je na način da se oštećenje javi u čelnoj ploči prije nego nastane popuštanje u gredi ili u stupu. Preostala 4 uzorka (L-1 do L-5), tablica 1.1, dimenzionirani su tako da imaju jake grede. Na temelju provedenih istraživanja zaključili su da dimenzije grede značajno utječu na ponašanje čelne ploče. Priključci sa srednjim dimenzijama greda.

Laboratorijska ispitivanja na osam priključaka pod utjecajem cikličkog djelovanja također su proveli i Shi i suradnici 2007. godine [27] u kojima su istraživali učinke debljine čelne ploče, promjera vijaka, ukrute čelne ploče te ukrute hrpta stupa na cjelokupno ponašanje priključaka. Prvi priključak izveden je s čelnom pločom čija je širina i visina jednaka širini i visini poprečnog presjeka priključene grede te ovdje nije razmatran. Preostalih sedam priključaka izvedeni su s obostrano produljenom čelnom pločom. Na temelju provedenih istraživanja zaključili su da priključci s obostrano produljenom čelnom pločom imaju dobra svojstva kao što su otpornost, rotacijska krutost, duktilnost te dostatan kapacitet trošenja potresne energije. Prema tome je preporuka primjenjivati ovaj tip priključaka u modeliranju čeličnih okvira koji su izloženi djelovanju potresa.

Pregledom i analizom dosadašnjih laboratorijskih ispitivanja priključaka koja su prikazana u tablici 1.1 (histerezne krivulje) može se uočiti da se odzivi pod utjecajem

cikličkog djelovanja značajno razlikuju, što ovisi o svojstvima pojedinih komponenata priključaka, ali se razlikuju i u odnosu na monotoni odziv priključka. Ako kroz vrhove histerezne krivulje povučemo liniju, dobije se histerezna anvelopa koja je prikazana na dva priključka JD2 i JD3 autora Shi i dr. [27], slika 1.3. Na prvom primjeru priključka JD2 vidljivo je da je uslijed očvršćivanja priključka histerezna anvelopa položena iznad monotone krivulje dok na drugom primjeru priključka JD3 histerezna anvelopa ima pad uslijed degradacije čvrstoće. Uzorci A-2, A-3 i A-5 (Tablica 1.1) također pokazuju znakove degradacije čvrstoće, dok uzorak A-1, B-1 i B-2 ima problem degradacije krutosti pri svakom ciklusu djelovanja. Priključci s tankim pločama pokazuju problem uštipnuća (engl. pinching) histerezne petlje koja nastaje uslijed otvaranja prostora između čelne ploče i pojasnice stupa. Ovaj fenomen vidljiv je na gotovo svim uzorcima autora Adey i dr., 2000. [1] i Bernuzzi i dr., 1996. [26] koji su prikazani u tablici 1.1.

Slika 1.3 Usporedba cikličke i monotone krivulje za tri karakteristična priključaka

					S	Svojstva	priključa	ka				Sažetak laborator	rijskih istraživ	ranja
Autor-i, godina	Naziv uzorka	Greda	Stup	Čelik	Vijak (d u mm)	Br. vijaka	Čelik za vijke	Prednapi- njanje vijaka	Debljina čelne ploče (mm)	Ukrute hrpta stupa	Ukrute čelne ploče	Histerezna krivulja	Prvo popuštanje	Oblik loma priključka
	A-1	W360x 45	W360x6 4	300 MPa (najma nje popušt anje)	25	8	A490	75% vlačne čvrstoće vijka	25,4	Ne	Ne	The second secon	Pojasnica stupa	Oštećenja u pojasnici stupa
	A-2	W360x 45	W360x6 4	300 MPa (najma nje popušt anje)	25	8	A490	75% vlačne čvrstoće vijka	25,4	Da	Ne	The second displacement (6.6.)	Pojasnica stupa	Lokalno izvijanje grede
Korol i dr., 1990 [8]	A-3	W360x 45	W360x7 9	300 MPa (najma nje popušt anje)	25	8	A490	75% vlačne čvrstoće vijka	19,0	Da	Da	Thereadized Explorement (a.b.)	Greda	Lokalno izvijanje grede
	A-4	W360x 45	W360x7 9	300 MPa (najma nje popušt anje)	25	8	A490	75% vlačne čvrstoće vijka	19,0	Ne	Ne	The real property like set of the property like set of the set of	Čelna ploča	Lom čelne ploče koji je iniciran stvaranjem pukotine oko zavara između čelne ploče i pojasnice grede
	A-5	W360x 45	W360x7 9	300 MPa (najma nje popušt anje)	25	8	A490	75% vlačne čvrstoće vijka	16,0	Da	Da	Charles and the second	Greda	Lom ukrute čelne ploče

Tablica 1.1 Pregled laboratorijskih istraživanja priključaka na utjecaj cikličkog djelovanja

					S	Svojstva	Sažetak laboratorijskih istraživanja							
Autor-i, godina	Naziv uzorka	Greda	Stup	Čelik	Vijak (d u mm)	Br. vijaka	Čelik za vijke	Prednapi- njanje vijaka	Debljina čelne ploče (mm)	Ukrute hrpta stupa	Ukrute čelne ploče	Histerezna krivulja	Prvo popuštanje	Oblik loma priključka
Korol i	B-1	W360x 57	W360x6 4	300 MPa (najma nje popušt anje)	25	8	A490	75% vlačne čvrstoće vijka	28,5	Da	Ne	Child Designed displayment (S.A.)	Pojasnica stupa	Lom pojasnice stupa i lom između pojasnice stupa i ukrute
1990 [8]	В-2	W360x 57	W360x6 4	300 MPa (najma nje popušt anje)	25	8	A490	75% vlačne čvrstoće vijka	22,0	Da	Da	Formalized Gippersons (6/4)	Pojasnica stupa	Lom pojasnice stupa i izvijanje grede
Bernuzz i i dr.	EPBC-1	IPE300	-	Fe 360	20	8	8.8	40% vlačne čvrstoće vijka	12,0	-	Ne	100 00 40 -20 -20 -40 -60 -100 -60 -100 -60 -40 -20 -20 -20 -20 -20 -20 -20 -2	Pukotina u zavaru u produženom dijelu čelne ploče	Lom čelne ploče
[26]	EPBC-2	IPE300	-	Fe 360	20	8	8.8	40% vlačne čvrstoće vijka	18,0	-	Ne	200 150 100 50 -50 -50 -50 -50 -50 -50 -5	Razvlačenje vijka	Lom vijaka
Adey i dr., 2000 [1]	S-1	W360x 51	W310x1 18	300 W	22	8	A490	Da	19,0	Da	Ne	400 400 400 400 400 400 400 400	-	Lom čelne ploče oko pojasnice grede

					S	Svojstva	priključa	ka				Sažetak laborator	ijskih istraživ	ranja
Autor-i, godina	Naziv uzorka	Greda	Stup	Čelik	Vijak (d u mm)	Br. vijaka	Čelik za vijke	Prednapi- njanje vijaka	Debljina čelne ploče (mm)	Ukrute hrpta stupa	Ukrute čelne ploče	Histerezna krivulja	Prvo popuštanje	Oblik loma priključka
	S-2	W360x 51	W310x1 18	300 W	30	8	A490	Da	13,3	Da	Ne	250 150 -50 -50 -50 -50 -50 -50 -50 -	-	Lom čelne ploče oko pojasnice grede
	S-3	W360x 51	W310x1 18	300 W	30	8	A490	Ne	13,3	Da	Ne	250 100 100 100 100 100 100 100 1	-	Lom čelne ploče oko pojasnice grede
Adey i dr., 2000 [1]	M-1	W460x 97	W310x1 43	300 W	22	8	A325	Da	15,9	Da	Ne	(u-y0) 500 -1000 -0.04 -0.02 0 0.02 0.04 End plate rotation (radians)	-	Lom čelne ploče oko pojasnice grede
	M-2	W460x 97	W310x1 43	300 W	22	8	A325	-	15,9	Da	Ne	000 000 000 000 000 000 000 000	-	Lom čelne ploče oko pojasnice grede
	M-3	W460x 97	W310x1 43	300 W	19	8	A490	-	19,0	Da	Ne	600 600 600 600 600 600 600 600	-	Lom čelne ploče oko pojasnice grede

					S	Svojstva	priključa	ka				Sažetak laborator	ijskih istraživ	vanja
Autor-i, godina	Naziv uzorka	Greda	Stup	Čelik	Vijak (d u mm)	Br. vijaka	Čelik za vijke	Prednapi- njanje vijaka	Debljina čelne ploče (mm)	Ukrute hrpta stupa	Ukrute čelne ploče	Histerezna krivulja	Prvo popuštanje	Oblik loma priključka
	M-4	W460x 97	W310x1 43	300 W	19	8	A490	-	15,9	Da	Da	000 000 000 000 000 000 000 000	-	Lamelarno kidanje čelne ploče te odvajanje ukrute od pojasnice stupa
	M-5	W460x 97	W310x1 43	300 W	22	16	A325	Da	15,9	Da	Da	1500 1000 1000 1000 1000 1000 1000 0.01 0.005 0.01 End plate rotation (radians)	-	Bočno izvijanje grede
Adey i dr., 2000 [1]	M-6	W460x 97	W310x1 43	300 W	19	8	A490	Ne	15,9	Da	Da	1000 100 1000 1	-	Lom čelne ploče oko pojasnice grede i ukrute
	M-7	W460x 97	W310x1 43	300 W	22	16	A325	Da	15,9	Da	Da	1500 1000 500 -1000 -1000 -1000 -0.02 -0.01 End plate rotation (radians) 0.02	-	Lom čelne ploče oko pojasnice grede i ukrute
	L-1	W610x 125	W310x1 43	300 W	30	8	A490	Da	15,9	Da	Ne	1000 500 0 -500	-	Lom čelne ploče oko pojasnice grede

					S	Svojstva	Sažetak laboratorijskih istraživanja							
Autor-i, godina	Naziv uzorka	Greda	Stup	Čelik	Vijak (d u mm)	Br. vijaka	Čelik za vijke	Prednapi- njanje vijaka	Debljina čelne ploče (mm)	Ukrute hrpta stupa	Ukrute čelne ploče	Histerezna krivulja	Prvo popuštanje	Oblik loma priključka
	L-2	W610x 125	W310x1 43	300 W	30	8	A490	Ne	15,9	Da	Ne	1000 (Fy0) (Fy	-	Lom čelne ploče oko pojasnice grede
Adey i	L-3	W610x 125	W310x1 43	300 W	19	8	A490	Ne	19	Da	Ne	1000 100 1000 1	-	Lom čelne ploče oko pojasnice grede
2000 [1]	L-4	W610x 125	W310x1 43	300 W	19	8	A490	Ne	15,9	Da	Da	1000 100 1000 1	-	Lom čelne ploče oko pojasnice grede
	L-5	W610x 125	W310x1 43	300 W	22	16	A325	Da	15,9	Da	Da	1000 1200 1200 4000 4000 4000 4000 4000	-	Prekomjerno izvijanje ispitnog okvira
Shi i dr., 2007 [27]	JD2	h=300 mm b=200 mm tw=8 mm tf=12 mm	h=300 mm b=250 mm tw=8 mm tf=12 mm	Q345	20	8	10.9	199 kN	20,0	Da	Da		Čelna ploča	Lom vijaka

					S	Svojstva	Sažetak laboratorijskih istraživanja							
Autor-i, godina	Naziv uzorka	Greda	Stup	Čelik	Vijak (d u mm)	Br. vijaka	Čelik za vijke	Prednapi- njanje vijaka	Debljina čelne ploče (mm)	Ukrute hrpta stupa	Ukrute čelne ploče	Histerezna krivulja	Prvo popuštanje	Oblik loma priključka
	JD3	h=300m m b=200m m tw=8 mm tf=12 mm	h=300 mm b=250 mm tw=8 mm tf=12 mm	Q345	20	8	10.9	199 kN	20,0	Da	Ne	400 300 300 400 400 400 400 400	Čelna ploča	Lom vijaka, popuštanje čelne ploče
	JD4	h=300 mm b=200 mm tw=8 mm tf=12 mm	h=300 mm b=250 mm tw=8 mm tf=12 mm	Q345	20	8	10.9	199 kN	20,0	Ne	Da	456 356 356 356 356 356 356 356 3	Hrbat stupa	Izvijanje hrpta stupa u tlaku, lom vijaka
Shi i dr., 2007 [27]	JD5	h=300 mm b=200 mm tw=8 mm tf=12 mm	h=300 mm b=250 mm tw=8 mm tf=12 mm	Q345	20	8	10.9	199 kN	25,0	Da	Da	-0.00 -0.00 (-0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1	Vijak	Lom vijaka
	JD6	h=300 mm b=200 mm tw=8 mm tf=12 mm	h=300 mm b=250 mm tw=8 mm tf=12 mm	Q345	24	8	10.9	283 kN	20,0	Da	Da	430 350 350 400 400 400 400 400 400 400 4	Čelna ploča	Lom ukrute čelne ploče, posmično izvijanje hrpta stupa, lokalno izvijanje pojasnice stupa, lom zavara
	JD7	h=300 mm b=200 mm tw=8 mm tf=12 mm	h=300 mm b=250 mm tw=8 mm tf=12 mm	Q345	24	8	10.9	283 kN	25,0	Da	Da	ender and ender	Čelna ploča	Lom ukrute čelne ploče, lom zavara između pojasnice grede i čelne ploče

					S	Svojstva	priključa	ka				Sažetak laboratorijskih istraživanja			
Autor-i, godina	Naziv uzorka	Greda	Stup	Čelik	Vijak (d u mm)	Br. vijaka	Čelik za vijke	Prednapi- njanje vijaka	Debljina čelne ploče (mm)	Ukrute hrpta stupa	Ukrute čelne ploče	Histerezna krivulja	Prvo popuštanje	Oblik loma priključka	
Shi i dr., 2007 [27]	JD8	h=300 mm b=200 mm tw=8 mm tf=12 mm	h=300 mm b=250 mm tw=8 mm tf=12 mm	Q345	20	8	10.9	199 kN	16,0	Da	Da		Čelna ploča	Lom ukrute čelne ploče, posmično izvijanje panela hrpta stupa, lom čelne ploče, lom vijaka	

1.3 Hipoteza i ciljevi istraživanja

Postavlja se sljedeća hipoteza:

Primjena matematičkog modela histerezne anvelope vijčanih priključaka stupa i grede omogućit će točniju procjenu odziva čeličnih okvira nelinearnim statičkim proračunom čiji će se rezultati svojom točnošću približiti rezultatima nelinearnog dinamičkog proračuna.

Cilj je predložiti novi matematički model histerezne anvelope na temelju svojstava cikličkog ponašanja vijčanih priključaka. Ovakav bi model ponašanja priključka ugrađen u analizu čeličnih okvira trebao pokazati realnije ponašanje pri nelinearnom statičkom odzivu u usporedbi s odzivom istog okvira s monotonim modelom ponašanja priključka. Verifikacija točnosti odziva provest će se nelinearnim dinamičkim proračunom.

Cilj je dati parametre za određivanje ciljanog pomaka u nelinearnom statičkom proračunu čeličnih okvira. Predloženi parametri za određivanje ciljanog pomaka trebali bi povećati točnost nelinearnog statičkog proračuna primjenom metode N2 u odnosu na nelinearni dinamički proračun.

Za što realniju procjenu cikličkog ponašanja priključaka cilj je precizno definirati ciklička svojstva čelika za koje će se dati parametri očvršćivanja i parametri oštećenja materijala. Parametri će se moći široko primjenjivati u svim numeričkim programima koji podržavaju kombinirani model očvršćivanja i model oštećenja materijala.

1.4 Metodologija istraživanja

Metodologija istraživanja podijeljena je u tri glavne cjeline: 1. Istraživanja cikličkih svojstava čelika; 2. Istraživanja cikličkih svojstava priključka; 3. Analiza utjecaja ponašanja priključaka na potresni odziv čeličnih okvira. Na slici 1.4 dan je shematski prikaz metodologije istraživanja.

Slika 1.4 Shematski prikaz metodologije istraživanja

Prva cjelina obuhvaća istraživanja cikličkih svojstava europskih mekih čelika S275 i S355. Prvo su provedena laboratorijska ispitivanja na utjecaj monotonog i cikličkog djelovanja. Monotona vlačna ispitivanja služe kako bi se odredila osnovna mehanička svojstva čelika. Na temelju podataka o deformacijama dobivenih iz monotonih vlačnih ispitivanja definirane su veličine deformacija u cikličkim ispitivanjima koje su provedene prema protokolu SAC 2000 [28]. Sva laboratorijska ispitivanja provedena su u laboratoriju za konstrukcije Građevinskog fakulteta Sveučilišta u Rijeci. Na temelju rezultata laboratorijskih ispitivanja čelika napravljene su numeričke simulacije cikličkog djelovanja na čeličnim uzorcima u programskom paketu ABAQUS [29] za koje su dani kalibracijski parametri koji se dalje primjenjuju u numeričkim simulacijama priključaka. Kalibracije parametra materijala provedene su prema Chabocheovom modelu očvršćivanja materijala [30] za Von Misesovu plohu popuštanja materijala te za model oštećenja čelika koji omogućuje pojavu i razvoj oštećenja u materijalu pri monotonom i cikličkom djelovanju.

Druga cjelina obuhvaća istraživanja cikličkih svojstava vijčanih priključaka stupa i grede s obostrano produljenom čelnom pločom. Za priključak je razvijen numerički model u programskom paketu ABAQUS [29] kako bi simulirali njegovo ponašanje na utjecaj monotonog i cikličkog djelovanja. Numerički model obuhvaća materijalnu nelinearnost, koja je određena prethodnim laboratorijskim ispitivanjima materijala. Svojstva materijala u numeričkom modelu priključka obuhvaćena su primjenom parametara očvršćivanja i parametara oštećenja materijala dobivenih kalibracijom. Modelirana je geometrijska nelinearnost osnovnih komponenata od kojih je sastavljen priključak kao što su stup, greda, čelna ploča, vijci, ukrućenja hrptenog dijela stupa. Numerički model vijka obuhvaća tijelo vijka, glavu vijka, maticu vijka te vlačno prednapinjanje u vrijednosti 70% vlačne čvrstoće. U numeričkom modelu priključka također su uzeti u obzir i kontakti između pojasnice stupa i čelne ploče, glave vijka i čelne ploče, matice i pojasnice stupa te kontakti tijela vijka i rupe vijka. Cikličko djelovanje na priključku simulirano je pomacima na kraju grede s promjenjivim amplitudama. Protokol cikličkog djelovanja preuzet je iz [28] a obuhvaća male, srednje i velike amplitude te se koristi za simulacije potresnih djelovanja u priključcima. Rezultati dobiveni numeričkim simulacijama prikazani su u obliku dijagrama momenta u spoju M_i i rotacije priključka ϕ . Kako bi se cikličko ponašanje priključka moglo dalje ugraditi u nelinearni potresni proračun okvira, dobivena histerezna petlja zamijenjena

17

je matematičkim modelom koji predstavlja anvelopu histerezne petlje. Točnost numeričkog modela priključka prethodno je verificirana rezultatima laboratorijskih ispitivanja dostupnih u [27].

Treća cjelina obuhvaća proračune čeličnih okvira izloženih potresnom djelovanju. Provedeni su nelinearni statički potresni proračuni prema metodi N2 [31] na modelu višekatnog okvira za dva različita modela priključaka: prvi koji uzima ponašanje priključka dobivenog monotonim simulacijama te drugi koji uzima u obzir stvarno histerezno ponašanje priključka primjenom novog modela histerezne anvelope. Kako bi dobili vjernu sliku ponašanja konstrukcije za zadano potresno djelovanje, potrebno je znati pomake konstrukcije. Zbog toga je napravljena usporedba dobivenih rezultata za prethodno opisane okvire za maksimalne apsolutne pomake i relativne pomake katova. Također su dane procjene najjačeg intenziteta potresa koji okviri mogu podnijeti, ovisno o modelu priključka. Ponašanje okvira dobiveno nelinearnim statičkim proračunom verificirano je rezultatima nelinearnog dinamičkog proračuna. U nelinearnim dinamičkim proračunima okvira priključci su modelirani primjenom dobivenih histereznih petlji koje su zamijenjene Richard-Abbottovim matematičkim modelom za koje su dani kalibracijski parametri. Za potresne analize primijenjen je programski paket SeismoStruct 2016 [32], dok je za podešavanje potresnih zapisa primijenjen SeismoMatch 2016 [33].

1.5 Sadržaj doktorskog rada

Doktorski rad sastoji se od sažetka na hrvatskom i engleskom jeziku, sadržaja, šest poglavlja, popisa slika i tablica korištenih u radu, privitaka te životopisa i popisa objavljenih radova doktoranda. U prvom poglavlju UVOD predstavljena je motivacija istraživanja, pregled ponašanja priključaka u potresu, hipoteza i ciljevi istraživanja, metodologija istraživanja te sadržaj doktorskog rada. U drugom poglavlju ISTRAŽIVANJE CIKLIČKIH SVOJSTAVA ČELIKA prvo su prikazana laboratorijska istraživanja svojstava čelika gdje su dani podatci o odabranom čeliku za ispitivanja, detalji o pravilnom oblikovanju uzoraka, podatci o opremi za provođenje ispitivanja te detaljan prikaz standardnih vlačnih ispitivanja i cikličkih ispitivanja. Zatim je prikazan postupak numeričke simulacije cikličkog ponašanja čelika gdje je dan konstitucijski model te kalibracija parametara materijala za izotropno-kinematički model očvršćivanja čelika te za model oštećenja čelika. Nakon toga prikazane su usporedbe

laboratorijskih ispitivanja i dobivenih numeričkih simulacija. U trećem poglavlju ISTRAŽIVANJE CIKLIČKIH SVOJSTAVA PRIKLJUČAKA dan je detaljan prikaz numeričkih simulacija priključaka, verifikacija numeričkog modela te matematički modeli za opis monotonog i cikličkog ponašanja priključaka. Predložen je novi model histerezne anvelope kojim se uzimaju učinci cikličkog ponašanja priključaka u nelinearnom statičkom proračunu. Dani su i parametri za definiranje svojstava priključaka za primjenu u nelinearnim dinamičkim proračunima za Richard-Abbottov ANALIZA UTJECAJA PONAŠANJA VIJČANIH model. U četvrtom poglavlju PRIKLJUČAKA NA POTRESNI ODZIV ČELIČNIH OKVIRA provedeni su nelinearni statički proračuni čeličnih okvira pri kojima su analizirana ponašanja kada se uzmu u obzir monotona svojstva ponašanja priključaka i kada se uzmu ciklička svojstva priključaka primjenom novog modela histerezne anvelope. U poglavlju je prvo dan opis nelinearne statičke metode, zatim podatci o relativnom prigušenju, podatci o potresnom opterećenju koji se primjenjuju u nelinearnom statičkom proračunu te podatci o konstrukciji na kojoj je provedena analiza. Provedena je verifikacija dobivenih rezultata primjenom nelinearnog dinamičkog proračuna. Modeli okvira u nelinearnom dinamičkom proračunu uzimaju u obzir ciklička svojstva priključaka primjenom Richard-Abbottovog modela priključka. Dani su podatci o stvarnim potresima te postupak podešavanja realnih zapisa potresa prema spektrima ubrzanja. Na kraju su prikazane usporedbe rezultata dobivenih prethodnim metodama. U petom poglavlju ZAKLJUČCI I PRIJEDLOZI ZA BUDUĆA ISTRAŽIVANJA dani su temeljni doprinosi doktorskog rada te zaključci izvedeni na temelju provedenih istraživanja. Na kraju su dane smjernice za daljnja istraživanja. U šestom poglavlju LITERATURA popis je literaturnih jedinica koje su korištene u izradi doktorskog rada.

2 ISTRAŽIVANJE CIKLIČKIH SVOJSTAVA ČELIKA

2.1 Uvod

U konstrukcijama izloženim potresnom djelovanju događaju se veliki pomaci što ima za posljedicu neelastično deformiranje materijala od kojih je konstrukcija izgrađena. Pod utjecajem cikličkog djelovanja, konstrukcijski čelici pokazuju složena mehanička svojstva kao što je Bauschingerov efekt te očvršćivanje materijala. Učinci protokola opterećenja na cikličko ponašanje različitih tipova konstrukcijskih čelika dani su u radovima [34, 35, 36] u kojima je pokazano da se odzivi konstrukcijskih čelika u potpunosti razlikuju na utjecaj monotonog i cikličkog djelovanja. Dodavanjem svakog novog ciklusa opterećenja čelik je izložen cikličkom očvršćivanju. Stoga histerezna krivulja koja prikazuje odnos naprezanja i deformacija leži iznad monotone krivulje naprezanja i deformacija u području popuštanja čelika. Lokalne deformacije materijala u područjima plastičnog deformiranja konstrukcijskih elemenata i priključaka čeličnih okvira nisu proporcionalne pomacima. To znači da i u slučaju simetričnih ciklusa izmjena pomaka u konstrukciji dovodi do nesimetričnog i promjenjivog lokalnog deformiranja materijala [37]. Razlog tomu su lokalna očvršćivanja materijala, imperfekcije konstrukcijskih elemenata i lokalna izvijanja konstrukcije [7]. U laboratorijskim ispitivanjima koja se provode na priključcima moguće je izmjeriti lokalne deformacije, ali ne i lokalna naprezanja u materijalu od kojeg su izrađene komponente priključka. Na temelju takvih ispitivanja ne može se odrediti odnos naprezanja i promjenjivih deformacija materijala pri cikličkoj promjeni pomaka [37, 7].

Kako bi se simulirao učinak promjenjivih deformacija koje nisu proporcionalne pomacima, odabran je eksperimentalni program po kojemu su provedena ciklička ispitivanja aksijalnim opterećivanjem uzoraka uz kontrolu pomaka pomične grede ispitnog stroja. Prvo su provedena standardna vlačna ispitivanja na ukupno 9 uzoraka

20

radi utvrđivanja osnovnih mehaničkih svojstava čelika. Nakon toga su provedena ciklička ispitivanja na ukupno 15 uzoraka prema protokolu opterećenja koji je definiran u [28] a kasnije će biti detaljnije objašnjen. Kako bi dobivena ciklička svojstva čelika bila dalje primjenjiva u numeričkim simulacijama, provedena je kalibracija parametara materijala prema Chabocheu [30] koji uzima u obzir kombinirani izotropno-kinematički model očvršćivanja materijala. Chabocheov model očvršćivanja materijala po prvi je put primijenjen za definiranje svojstava cikličkog ponašanja čelika s promjenjivim vrijednostima deformacija. Provedena je i kalibracija parametara materijala za definiranje svojstava oštećenja materijala i pojave loma. Rezultati prikazani u ovom poglavlju objavljeni su u radu [38].

2.2 Laboratorijska ispitivanja svojstava čelika

2.2.1 Odabir čelika za ispitivanje

Čelik koji se primjenjuje u nosivim konstrukcijama sadrži 98% željeza te mali udio ugljika i ostalih legirajućih elemenata kao što su silicij, mangan, fosfor, nikal, krom itd. Povećanjem udjela ugljika utječe se na povećanje tvrdoće i čvrstoće, ali se smanjuje duktilnost i žilavost. Stoga je sastav ugljika ograničen na 0,2% do 0,25%. Čelični elementi u građevinarstvu proizvode se od mekih čelika s malim udjelom ugljika (niskougljični čelici C<0,25%) te su poznati kao građevinski ili konstrukcijski čelici. S obzirom na mehanička svojstva, konstrukcijski čelici moraju imati veliku granicu popuštanja, dovoljnu plastičnu deformabilnost zbog izbjegavanja pojave krtog loma, čvrstoću pri povišenim temperaturama te zadovoljavajuću žilavost i dinamičku izdržljivost. Također moraju biti otporni na trošenje i koroziju, zavarljivi te prikladni za hladno oblikovanje.

Čelici koji su odabrani za ispitivanje su europski meki konstrukcijski čelici S275JR i S355J2+M. Prema EN 10025 normi [39] specificirane su najmanje vrijednosti granice popuštanja za limove tanje od 16 mm, koja iznose 275 MPa (S275JR) i 355 MPa (S355J2+M). Čelik S275JR za limove tanje od 16 mm trebao bi zadovoljiti vrijednosti vlačne čvrstoće u rasponu od 430 MPa do 580 MPa, dok bi čelik S355J2+M za limove tanje od 16 mm trebao zadovoljiti vrijednosti vlačne čvrstoće u rasponu od 430 MPa do 580 MPa, dok bi čelik S355J2+M za limove tanje od 16 mm trebao zadovoljiti vrijednosti vlačne čvrstoće u rasponu od 470 MPa do 630 MPa. Udio elemenata u kemijskom sastavu taline od kojeg su izrađeni ispitni uzorci prikazan je u tablici 2.1, a vrijednosti su preuzete iz certifikata proizvođača.

21

	Č a lile	0	N/L .o	0:	D	0	N	0
	Celik	し し	IVIN	51	P	3	N	Cu
EN 10025	S275	<0,18	<1,5		<0,03	<0,03	<0,012	<0,55
standard	S355	<0,2	<1,6	>0,14 <0,25	<0,03	<0,03	<0,012	<0,55
Izmjerene	S275	0,173	1,02	0,021	0,016	0,005	0,0051	0,008
vrijednosti	S355	0,16	1,36	0,192	0,015	0.007	0,005	0,04
	Čelik	Ni	Cr	Мо	V	AI	Ti	Nb
EN 10025	S275	-	-	-	-	-	-	-
standard	S355	-	-	-	-	-	-	-
1	0075	0.040	0.044	0.004	0.004	0.05	0.004	0.001
Izmjerene	S275	0,012	0,014	0,001	0,001	0,05	0,001	0,001

Tablica 2.1 Udio elemenata u kemijskom sastavu taline čelika S275 i S355 (%) [38]

2.2.2 Oblikovanje ispitnih uzoraka

Oblik ispitnih uzoraka odabran je prema obliku elemenata koji se primjenjuju za izradu priključaka, odnosno okvirne konstrukcije. Budući da su konstrukcijski elementi izvedeni od profila (stupovi i grede) i pločastih elemenata (čelne ploče), za ispitivanje su odabrane strojno obrađene šipke pravokutnog poprečnog presjeka. Uzorci su izvađeni iz šipki u smjeru valjanja iz jedne serije materijala. Uobičajeno je da se za standardna vlačna ispitivanja koriste standardni ispitni uzorci. Međutim, u slučaju cikličkog ispitivanja standardnih ispitnih uzoraka, uslijed izmjeničnog djelovanja vlaka i tlaka izražen je problem izvijanja. Stoga je oblikovanju i dimenzioniranju ispitnih uzoraka posvećena posebna pozornost. Osnovna pravila za oblikovanje i dimenzioniranje slijeđena su prema normi za ispitivanje vlačne čvrstoće metalnih materijala ISO6892-1 [40] a dana su u dodatku D koji se odnose na uzorke čija je debljina veća od 3 mm. Na slici 2.1 prikazan je oblik standardnog ispitnog uzorka pravokutnog poprečnog presjeka.

Slika 2.1 Strojno obrađeni standardni ispitni uzorak pravokutnog poprečnog presjeka [40]

Oznake sa slike 2.1 imaju sljedeća značenja:

- a_0 početna debljina ispitnog uzorka
- *b*₀ početna širina suženog dijela ispitnog uzorka
- *L_c* duljina suženog dijela ispitnog uzorka

 L_0 - mjerna duljina ispitnog uzorka (razmak između mjernih instrumenata - ekstenzometara) (engl. gauge length)

L_t - ukupna duljina ispitnog uzorka

 S_0 - početna površina poprečnog presjeka suženog dijela ispitnog uzorka

1 - oznaka krajeva uzorka koji se prihvaćaju u čeljusti ispitnog stroja

Najmanji prijelazni polumjer između suženog dijela ispitnog uzorka i kraja uzorka koji se prihvaća u čeljusti ispitnog stroja je 12 mm. Preporuča se da omjer širine i debljine uzorka pravokutnog poprečnog presjeka ne prelazi 8:1. Zbog problema izvijanja koji se javljaju pri cikličkim ispitivanjima, duljina suženog dijela ispitnog uzorka L_c smanjena je na najmanju moguću vrijednost, tako da su zadovoljeni najmanji prethodno navedeni kriteriji te najmanji dopušteni razmak između ekstenzometara koji iznosi 20 mm. Zhou i suradnici [34] pokazali su da oblik uzorka ne utječe na rezultate monotonih ispitivanjima skraćenih i standardnih ispitnih uzoraka. Na slici 2.2 prikazan je odabrani oblik i geometrija ispitnih uzoraka koji su primijenjeni za monotona i ciklička ispitivanja.

Slika 2.2 Oblik i dimenzije ispitne epruvete [mm] [38]

Zbog jednostavnosti se u daljnjem tekstu koriste skraćene oznake za čelik. Za S355J2+M koristi se oznaka S275, a za S355J2+M koristi se oznaka S355. Oznaka uzoraka M koristi se za monotona ispitivanja, a C za ciklička ispitivanja uzoraka.

2.2.3 Oprema za provođenje ispitivanja

Ispitivanja monotonih i cikličkih svojstava čelika provedena su u laboratoriju za konstrukcije Građevinskog fakulteta u Rijeci na univerzalnom tlačno-vlačnom stroju (kidalici) Zwick/Roell Z600 koji je prikazan na slici 2.3. Kidalica je podijeljena na dva radna prostora, a ispitivanja su provedena na gornjem radnom prostoru pri čemu je donja pomična greda podignuta prema gore i podešena za ugradnju ispitnog uzorka. Na slici 2.4 prikazan je položaj hidrauličkih čeljusti te ugrađen uzorak za ispitivanje. Za upravljanje ispitivanjem i registraciju podataka korišten je program testXpert II [41].

Slika 2.3 Kidalica Zwick/Roell Z600

Slika 2.4 Hidrauličke čeljusti (600 kN) i prikaz ugrađenog uzorka za ispitivanje [38]

2.2.4 Standardna vlačna ispitivanja

Kako bi se odredila osnovna mehanička svojstva čelika S275 i S355, provedena su standardna jednoosna vlačna ispitivanja. Ispitano je ukupno 9 uzoraka na sobnoj temperaturi prema normi za metalne materijale EN ISO 6892-1 [40]. Do dostizanja granice popuštanja f_y kontrolirane su deformacije pomoću ekstenzometara, a brzina prirasta deformacije iznosi 0,00025 1/s. Nakon dostizanja granice popuštanja kontrolirani su pomaci pomoću pomične grede ispitnog stroja, a brzina prirasta deformacije jednaka je 0,0067 1/s. Kao rezultat ispitivanja dobivene su krivulje odnosa naprezanja σ i deformacije ε , a na slici 2.5 prikazane su karakteristične veličine.

Slika 2.5 Dijagram naprezanja-deformacije $(\sigma - \varepsilon)$ za meki čelik

Oznake na slici 2.5:

- *E* Youngov modul elastičnosti ($tan \alpha$)
- f_v gornja granica popuštanja čelika
- f_u vlačna čvrstoća
- ε_v deformacija na granici popuštanja
- ε_u deformacija pri najvećoj vlačnoj čvrstoći
- ε_{upl} plastična komponenta deformacije pri najvećoj vlačnoj čvrstoći
- ε_{u1} deformacija pri lomu
- ε_{u1pl} plastična komponenta deformacije pri lomu

Mehanička svojstva određena ispitivanjem prikazana su u tablici 2.2, a krivulje odnosa naprezanja i deformacije prikazane su na slici 2.6. Vrijednosti dobivene za čelike S275 i S355 pokazuju da su granice popuštanja f_y i vlačna čvrstoća f_u unutar granica definiranih u skladu s normom. Vrijednosti deformacija $(\varepsilon_u i \varepsilon_{u1})$ ukazuju na dobru duktilnost čelika S275 i S355.

Tablica 2.2 Osnovna mehanička svojstva čelika S275 i S355 dobiveni standardnim vlačnim ispitivanjima [38]

Oznaka uzorka	<i>Е</i> [GPa]	f _у [MPa]	<i>f</i> _и [MPa]	ε _y [%]	ε _u [%]	ε _{u1} [%]
M_S275_01	213	323	471	0,187	19,04	50,2
M_S275_02	203	309	470	0,188	18,92	50
M_S275_03	209	318	471	0,175	18,93	50,1
Srednja vrijednost	208	317	471	0,183	18,96	50,1
M_S355_01	208	385	542	0,221	15,69	47,5
M_S355_02	195	380	553	0,222	15,05	47,3
M_S355_03	200	373	546	0,244	15,17	47,2
M_S355_04	199	399	556	0,228	14,99	46,8
M_S355_05	205	386	569	0,289	15,40	47,4
M_S355_06	188	381	548	0,243	15,32	47,4
Srednja vrijednost	199	384	552	0,288	15,27	47,3

Slika 2.6 Krivulje $\sigma - \varepsilon$ dobivene standardnim vlačnim ispitivanjima [38]

2.2.5 Ciklička ispitivanja

Svrha cikličkih laboratorijskih ispitivanja je odrediti potresna svojstva materijala kao sastavnog dijela konstrukcije koja je izložena utjecaju potresa. Ciklička ispitivanja provedena su na utjecaj cikličkog djelovanja prema protokolu SAC 2000 [28], a prikazan je na slici 2.7. Protokol sadrži postupno rastuće cikluse deformiranja kao međukatni kut θ tj. relativni međukatni pomak podijeljen s visinom kata.

Međukatni kut θ (engl. interstorey drift angle) je parametar koji se koristi za kontrolu protokola opterećenja. Vrijednosti vertikalnih amplituda s bojevima ciklusa dane su u tablici 2.3. Budući da je materijal važna komponenta konstrukcije, koja je sastavni dio

priključka stupa i grede, odabran je upravo SAC protokol deformiranja za ispitivanje čelika, koji je proveden kontrolom pomaka pomoću pomične grede ispitnog stroja. Ispitano je ukupno 15 uzoraka čelika S275 i S355 na isti oblik protokola opterećenja pri kojima se razlikuju vrijednosti pomaka (deformiranja), što je prikazano u tablici 2.4.

Korak	Vršna deformacija θ [rad]	Broj ciklusa				
1	0,00375	6				
2	0,005	6				
3	0,0075	6				
4	0,01	4				
5	0,015	2				
6	0,02	2				
7	0,03	2				
8	0,04	2				
Nastaviti sa i	Nastaviti sa inkrementom θ od 0,01, po dva ciklusa u svakom koraku					

Tablica 2.3 Vrijednosti vertikalnih amplituda u svakom koraku [28]

Najveći pomaci pomične grede δ_G odgovaraju deformacijama čelika pri kojima se razvija znatna deformacija elemenata i trošenje potresne energije. Prvo je odabrana vrijednost koja približno odgovara deformaciji pri vlačnoj čvrstoći dobivenoj monotonim ispitivanjima čelika, a ostale vrijednosti su smanjivane na temelju iskustava iz prethodno ispitanih uzoraka kako bi se umanjili učinci izvijanja, uz zadržavanje najvećih deformacija koje su znatno veće od deformacija pri granici popuštanja. Pomak od 5,23 mm (Lo.1) dobiven monotonim vlačnim ispitivanjem odgovara deformaciji od 15%; pomak od 3,08 mm (Lo.2) odgovara deformaciji od 8%; pomak od 2,02 mm (Lo.3) odgovara deformaciji od 5%; pomak od 2,09 mm (Lo.4) odgovara deformaciji od 5%; pomak od 1,73 mm (Lo.5) odgovara deformaciji od 4% (slika 2.8).

Tablica 2.4 Podatci d	o protokolima	deformiranja	[38]
-----------------------	---------------	--------------	------

Korak	Broj		ć	δ _G [mm]	
deformiranja	ciklusa	Lo.1	Lo.2	Lo.3	Lo.4	Lo.5
1	6	0,60	0,45	0,40	0,47	0,46
2	6	0,67	0,50	0,42	0,51	0,48
3	6	0,94	0,59	0,49	0,56	0,53
4	4	1,25	0,70	0,54	0,63	0,57
5	2	1,82	1,00	0,67	0,78	0,68
6	2	2,38	1,33	0,85	0,97	0,82
7	2	3,42	1,94	1,25	1,35	1,12
8	2	4,36	2,52	1,64	1,73	1,43
9	2	5,23	3,08	2,02	2,09	1,73

Slika 2.8 Protokoli deformiranja (pomaka) za ciklička ispitivanja uzoraka [38]

Tijekom laboratorijskih ispitivanja, na najužem dijelu uzoraka mjerena je deformacija s pomoću ekstenzometra. Također su registrirane i veličine uzdužnih sila u uzorcima te pomaci pomične grede. Naprezanja su definirana kao omjer izmjerenih uzdužnih sila u uzorku i početne površine poprečnog presjeka na najužem dijelu uzorka. Tako su određene krivulje odnosa naprezanja i deformacija uslijed cikličkog djelovanja, odnosno histerezne krivulje.

Prva tri uzorka C_S275_01, C_S275_02 i C_S275_03 ispitana su na protokol opterećenja Lo.1 za najveću vrijednost pomaka pomične grede od 5,23 mm (ukupno 32 ciklusa), 4,36 mm (ukupno 30 ciklusa) i 3,42 mm (ukupno 28 ciklusa). Izvijanje se pojavilo na sva tri uzorka nakon 27 ciklusa, dok je uzorak C_S275_01 doživio lom u 32 vlačnom poluciklusu. Kao rezultat ispitivanja dobivene su deformacije ε u vremenu t koje su neproporcionalne pomacima δ_G nanesenim na krajevima uzoraka, slika 2.9. To se javlja zbog imperfekcija uzorka (imperfekcije koje nastaju u proizvodnji lima, strojnoj obradi uzorka, postavljanje uzorka u stroj za ispitivanje), očvršćivanja materijala i izvijanja koja su prisutna i u stvarnim konstrukcijama zbog velikih deformacija koje nastaju uslijed djelovanja potresa.

Uzorak C_S275_04 je ispitan na protokol opterećenja Lo.2 uz najveću vrijednost pomaka od 3,08 mm (ukupno 32 ciklusa) a uzorci C_S275_05 i C_S275_06 uz najveću vrijednost pomaka od 2,52 mm (ukupno 30 ciklusa). Nakon zadnjeg poluciklusa, uzorci su vlačno napregnuti do loma, slika 2.10.

Uzorci C_S275_07, C_S275_08 i C_S278_09 su ispitani na protokol opterećenja Lo.3 uz najveću vrijednost pomaka od 2,02 mm (ukupno 32 ciklusa), slika 2.11. Uzorci C_S355_01, C_S355_02 i C_S355_03 su ispitani na protokol opterećenja Lo.4 uz najveću vrijednost pomaka od 2,09 mm (ukupno 32 ciklusa), slika 2.12, dok su uzorci C_S355_04, C_S355_05 i C_S355_06 ispitani na protokol opterećenja Lo.5 uz najveću vrijednost pomaka od 1,73 mm (ukupno 32 ciklusa), slika 2.13. Nakon zadnjeg poluciklusa, uzorci C_S275_04 do C_S275_09 te C_S355_01 do C_S355_06 su vlačno napregnuti do loma.

30

Slika 2.9 Zapisi deformacija i naprezanja u vremenu za uzorke C_S275_01, C_S275_02 i C_S275_03 [38]

Slika 2.10 Zapisi deformacija i naprezanja u vremenu za uzorke C_S275_04, C_S275_05 i C_S275_06 [38]

Slika 2.11 Zapisi deformacija i naprezanja u vremenu za uzorke C_S275_07, C_S275_08 i C_S275_09 [38]

Slika 2.12 Zapisi deformacija i naprezanja u vremenu za uzorke C_S355_01, C_S355_02 i C_S355_03 [38]

Slika 2.13 Zapisi deformacija i naprezanja u vremenu za uzorke C_S355_04, C_S355_05 i C_S355_06 [38]

Histerezne krivulje koje prikazuju odnos naprezanja σ i deformacija ε dobivene za čelik S275 prikazani su na slici 2.14 dok su za čelik S355 prikazane na slici 2.15.

Slika 2.14 Histerezne krivulje za čelik S275 [38]

Slika 2.15 Histerezne krivulje za čelik S355 [38]

Usporedba monotone krivulje naprezanja-deformacije i histerezne krivulje dobivene cikličkim ispitivanjem prikazana je na slici 2.16. Monotona krivulja naprezanjadeformacije se često koristi kao konstitucijski model materijala u potresnim proračunima, međutim, monotona krivulja naprezanja-deformacije i histrezna krivulja se značajno razlikuju. Akumulacija oštećenja zbog cikličkog djelovanja dovodi do smanjenja duktilnosti, što se može vidjeti i iz vrijednosti deformacija pri vlačnoj čvrstoći i vrijednosti deformacija pri lomu. Vrijednosti vlačne čvrstoće su gotovo jednake za monotono i cikličko ponašanje čelika. Deformacije pri vlačnoj čvrstoći ε_u te deformacije pri lomu ε_{u1} pokazuju značajnu razliku. Deformacija pri lomu za čelik S275 je smanjena za 43,47%, a za čelik S355 za 27,84%. S povećanjem ciklusa javlja se očvršćivanje materijala pa je vidljivo da je histerezna krivulja položena iznad monotone krivulje u području popuštanja čelika.

Slika 2.16 Usporedba monotonih krivulja naprezanja-deformacije i histereznih krivulja za čelike S275 i S355 [38]

2.3 Numeričke simulacije cikličkog ponašanja čelika

Kako bismo simulirali stvarno ponašanje konstrukcije, potrebno je precizno definirati ponašanje materijala u modelu konstrukcije. Laboratorijska ispitivanja daju osnovna saznanja o potresnim svojstvima čelika, ali je iz laboratorijskih rezultata potrebno formirati konstitucijsku jednadžbu kako bi se dalje mogle ugraditi u numeričke modele. U većini potresnih proračuna koriste se svojstva materijala dobivena standardnim vlačnim ispitivanjima temeljenim na jednoosnom opterećenju, a odnos naprezanja i deformacije je obično definiran kao bilinearan ili multilinearan model. Takvi modeli dostatni su za rješavanje jednostavnih elastičnih problema ili elastoplastičnih problema s malim plastičnim deformacijama. Međutim, primjena takvih modela ne može opisati točno ponašanje materijala pod utjecajem cikličkog djelovanja. Mnogi znanstvenici predlažu konstitucijske modele kako bi simulirali svojstva materijala pod utjecajem

Ramberg i Osgood, 1943. godine [42] predlažu troparametarski konstitucijski model naprezanja i deformacija koja se široko primjenjuje za metalne materijale. Primjena ovog modela na čelicima prikazana je u [36, 43]. Chaboche, 1989. godine [30] predlaže ciklički konstitucijski model koji uključuje izotropno i kinematičko očvršćivanje materijala, a koristi se za simulacije nelinearnog ponašanja materijala koji su izloženi utjecaju cikličkog djelovanja. Ovaj model je primjenjiv u većini numeričkih programa koji podržavaju kombinirani model očvršćivanja materijala.

Kalibracija parametara očvršćivanja materijala obično se provodi na uzorcima koji su izloženi simetričnim ciklusima opterećenja i konstantnim rasponima deformacija [44, 45, 46, 47, 48, 49, 50, 51]. Parametri se dalje koriste u numeričkim simulacijama za rješavanje različitih inženjerskih problema. U konstrukcijama izloženima potresu, rasponi deformacija su vrlo promjenjivi, a složeni zakoni očvršćivanja čelika nepraktični su za primjenu zbog promjena raspona deformiranja materijala koje se u konstrukcijama javljaju u potresu slučajne prirode. Zbog relativne jednostavnosti i široke primjenjivosti Chabocheovog modela očvršćivanja čelika u postojećim numeričkim programima (Ansys, ABAQUS), provedena je kalibracija parametara na temelju rezultata dobivenih laboratorijskim ispitivanjima. Točnost modela očvršćivanja materijala s promjenjivim rasponima deformacija verificirana je simuliranjem laboratorijskih rezultata primjenom programskog paketa ABAQUS [29].

Nakon dostizanja najveće čvrstoće materijala nastupa degradacija čvrstoće i krutosti. Područje degradacije svojstava materijala nije moguće opisati prethodno spomenutim izotropno-kinematičkim modelom očvršćivanja. Stoga je za precizno opisivanje ponašanje čelika neophodno ugraditi i model oštećenja materijala.

U ovom doktorskom radu po prvi put je primijenjen Chabocheov modela očvršćivanja za definiranje cikličkih svojstava čelika s promjenjivim deformacijama. Također je prvi put primijenjen model oštećenja čelika za opisivanje degradacije čvrstoće i krutosti pri cikličkom djelovanju na europskim mekim čelicima S275 i S355. Ovim modelima obuhvaćena je cjelokupna slika o cikličkim svojstvima čelika te je na taj način obogaćena baza podataka o ponašanju čelika u potresu.

2.3.1 Konstitucijski modeli čelika

Ponašanje čelika može se prikazati u obliku konstitucijskog modela čelika koji je podijeljen na četiri dijela, slika 2.17:

- Linearno-elastično ponašanje čelika (a-b),
- Plastično popuštanje čelika s očvršćivanjem (b-d),
- Pojava oštećenja u materijalu (c)
- Razvoj oštećenja čelika do loma, degradacija čvrstoće i krutosti (c- d`)

Pojava oštećenja u materijala ne utječe na prethodno plastično ponašanje, što znači da se elasto-plastični model i model oštećenja materijala mogu razmatrati odvojeno. Bez modela oštećenja, ponašanje čelika pratilo bi krivulju (c-d). Elastična svojstva čelika (a-b) i plastična svojstva čelika (b-d) riješena su izotropno-kinematičkim modelom očvršćivanja. Matematičke formulacije detaljno su prikazane u dijelu 2.3.1.1. ovog poglavlja dok je kalibracija parametara dana u dijelu 2.3.2.1. Pojava i razvoj oštećenja u čeliku riješena su modelom oštećenja koji je detaljno opisan u dijelu 2.3.1.2. a kalibracija parametara oštećenja dana je u 2.3.2.2.

Slika 2.17 Konstitucijski model čelika [29]

2.3.1.1 Izotropno-kinematički model očvršćivanja

Laboratorijskim ispitivanjima materijala utvrđeno je da tijekom procesa plastičnog deformiranja početna ploha popuštanja može promijeniti veličinu, oblik i položaj. Pravila kojima se opisuju promjene plohe popuštanja zovu se zakoni očvršćivanja materijala (engl. hardening rules). Za opisivanje plastičnog ponašanja materijala pod utjecajem cikličkog djelovanja korišten je izotropno-kinematički model očvršćivanja materijala. Neka je ploha popuštanja prikazana kao funkcija glavnih naprezanja [52]:

$$f(\sigma_1, \sigma_2, \sigma_3) \tag{2.1}$$

U elastičnom stanju ona ima vrijednost:

$$f(\sigma_1, \sigma_2, \sigma_3) < 0 \tag{2.2}$$

a u plastičnom stanju poprima vrijednost:

$$f(\sigma_1, \sigma_2, \sigma_3) = 0 \tag{2.3}$$

U jednoosnom stanju naprezanja ispitnog uzorka, pri vlaku ili tlaku, kod dostizanja granice popuštanja $\sigma|_0$ uzorak se deformira bez promjene naprezanja. Prema tome uvjet za plastično popuštanje u jednoosnom stanju naprezanja glasi [52]:

$$|\sigma| = \sigma|_0 \tag{2.4}$$

Metali prelaze u posmično stanje kao posljedica posmika u svim zrnima pa se funkcija *f* može zapisati i kao funkcija razlike glavnih naprezanja, tj. najvećih posmičnih naprezanja [52]:

$$f[(\sigma_1 - \sigma_2), (\sigma_2 - \sigma_3), (\sigma_3 - \sigma_1)]$$
 (2.5)

Za Von Misesovu plohu popuštanja, stanje plastičnosti dostiže se kada veličine oktaedarskog posmičnog naprezanja dosegnu kritičnu vrijednost *k*:

$$\tau_0 = \frac{1}{3}\sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2} = k$$
(2.6)

U slučaju rastezanja $\sigma_1 = \sigma|_0$ dok su preostala naprezanja jednaka nuli $\sigma_2 = \sigma_3 = 0$ dobiva se:

$$\tau_0 = \frac{\sqrt{2}}{3}\sigma|_0 \tag{2.7}$$

pa se uvjet (2.6) može zapisati u obliku:

$$\sigma|_{0} = \frac{1}{\sqrt{2}}\sqrt{(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2}}$$
(2.8)

U idealnom plastičnom stanju ploha popuštanja ostaje nepromijenjena, međutim u općem slučaju ploha popuštanja može promijeniti veličinu, oblik i položaj te nastupa očvršćivanje materijala. Stoga funkcija popuštanja ima oblik [53]:

$$f(\sigma, R) = 0 \tag{2.9}$$

gdje *R* predstavlja jedan ili više parametara očvršćivanja materijala koji se mijenjaju tijekom plastičnog deformiranja i definiraju razvoj plohe popuštanja.

 IZOTOROPNO OČVRŠĆIVANJE MATERIJALA (engl. isotropic hardening model) znači da ploha popuštanja zadržava oblik ali se širi s porastom naprezanja, slika 2.18. Ploha popuštanja ima oblik:

$$f(\sigma, R) = f(\sigma) - R = 0 \tag{2.10}$$

Slika 2.18 Izotropni model očvršćivanja: a) Dijagram naprezanja i deformacije za jednoosno stanje naprezanja, b) Razvoj plohe popuštanja [54]

Za Von Misesovu plohu popuštanja glasi:

$$f(\sigma) = \frac{1}{\sqrt{2}}\sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2} - \sigma|_0$$
(2.11)

$$f(\sigma) = \sqrt{J_2} - \sigma|_0 \tag{2.12}$$

gdje je

 $\sigma|_0$ - početna veličina plohe popuštanja pri nultoj deformaciji

J₂ - druga invarijanta naprezanja. Izraz (2.10) može se zapisati:

$$f(\sigma, R) = \sqrt{J_2} - \sigma|_0 - R = 0$$
 (2.13)

Izotropni parametar očvršćivanja R može se prikazati kao funkcija ekvivalentne plastične deformacije $\bar{\varepsilon}^{pl}$:

$$R = R(\bar{\varepsilon}^{pl}) \tag{2.14}$$

Promjena veličine plohe popuštanja prema Chabocheu [30, 29]:

$$dR = b(Q_{\infty} - R)d\bar{\varepsilon}^{pl} \tag{2.15}$$

gdje je

 Q_{∞} - maksimalna promjena plohe popuštanja

b - stupanj promjene plohe popuštanja

Integracijom izraza (2.15) s početnom vrijednošću R = 0 dobivamo:

$$R = Q_{\infty} \left(1 - e^{-b\bar{\varepsilon}^{pl}} \right) \tag{2.16}$$

Uvrštavanjem (2.16) u (2.13) dobivamo:

$$\sigma^{0} = \sigma|_{0} + Q_{\infty} \left(1 - e^{-b\bar{\varepsilon}^{pl}}\right)$$
(2.17)

gdje je

 σ^0 - trenutna veličina plohe popuštanja

Primjenom izotropnog modela, granica popuštanja i granica gnječenja u vlaku i tlaku su iste. To znači da je ploha popuštanja simetrična oko osi naprezanja te uvijek ostaje ista neovisno o porastu deformacije uslijed naprezanja, što u stvarnosti nije tako. Kako bi se opisao Bauschingerov efekt potrebno je uzeti u obzir kinematičko očvršćivanje materijala.

 KINEMATIČKO OČVRŠĆIVANJE MATERIJALA (engl. kinematic hardening model) u kojoj ploha popuštanja zadržava oblik i veličinu, ali se translatira u polju naprezanja, slika 2.19. Kinematičkim modelom je moguće opisati Bauschingerov efekt. Ploha popuštanja ima oblik:

$$f(\sigma, R) = f(\sigma - \alpha) = 0 \tag{2.18}$$

gdje je

 α - tenzor zaostalih naprezanja (engl. backstress)

Slika 2.19 Kinematički model očvršćivanja: a) Dijagram naprezanja i deformacije za jedoosno ispitivanje, b) Razvoj plohe popuštanja [54]

Za Von Misesovu plohu popuštanja glasi:

$$f = J_2(\sigma - \alpha) - \sigma|_0 = 0$$
 (2.19)

gdje je

 $J_2(\sigma - \alpha)$ - ekvivalentno Von Misesovo naprezanje u odnosu na zaostala naprezanja α te ima oblik:

$$J_2(\sigma - \alpha) = \sqrt{\frac{3}{2}(S - \alpha^{dev}):(S - \alpha^{dev})}$$
(2.20)

gdje je

 σ - tenzor naprezanja

S - devijatorski tenzor naprezanja

α^{dev} - devijatorski dio tenzora zaostalih naprezanja

Kinematičko očvršćivanje definira se kao aditivna kombinacija čisto kinematičkog izraza (linearni Zieglerov zakon očvršćivanja) i relaksacijskog izraza koji uvodi nelinearnost, a može se zapisati kao:

$$d\alpha_i = \frac{c}{\sigma^0} (\sigma - \alpha) d\bar{\varepsilon}^{pl} - \gamma \alpha_i d\bar{\varepsilon}^{pl}$$
(2.21)

gdje su *C* i γ kinematički parametri koji se dobiju kalibracijom iz rezultata cikličkih ispitivanja materijala. *C* je početni kinematički modul očvršćivanja, dok γ definira stupanj promjene pri kojoj se smanjuje kinematički modul očvršćivanja s porastom plastičnih deformacija. Ukupna zaostala naprezanja računaju se prema izrazu:

$$\alpha = \sum_{i=1}^{N} a_i \tag{2.22}$$

gdje je N broj zaostalih naprezanja. Preporuka prema Chabocheu je da se primijene tri zaostala naprezanja [29].

2.3.1.2 Model oštećenja

Lom je lokalno odvajanje materijala uslijed djelovanja naprezanja. Meke čelike karakterizira duktilan lom koji nastaje nakon postupnog plastičnog deformiranja. Model duktilnog loma čelika koji je ovdje prikazan je empirijski model a temelji se na širenju plastičnih deformacija. Kada plastična deformacija dosegne kritičnu vrijednost nastupa lom materijala. Model oštećenja čelika može se razdvojiti na dva dijela: pojava oštećenja i razvoj oštećenja.

 POJAVA OŠTEĆENJA (engl. damage initiation) definira mjesto pojave degradacije čvrstoće i krutosti. Definira se kao ekvivalentna plastična deformacija pri pojavi oštećenja $\bar{\varepsilon}_{D}^{pl}$ u funkciji parametra η i brzine plastičnog deformiranja $\dot{\varepsilon}^{pl}$. Parametar η predstavlja odnos između hidrostatskog naprezanja σ_m i ekvivalentnog (Von Misesovog) naprezanja σ_e :

$$\eta = \sigma_m / \sigma_e \tag{2.23}$$

gdje je

$$\sigma_m = 1/3(\sigma_1 + \sigma_2 + \sigma_3)$$
 (2.24)

$$\sigma_e = \sqrt{1/2[(\sigma_1 - \sigma_2)^2 + (\sigma_1 - \sigma_3)^2 + (\sigma_3 - \sigma_2)^2]}$$
(2.25)

Rice i Tracey, 1969. godine [55] su dali eksponencijalnu formulaciju zavisnosti brzine razvoja oštećenja u odnosu na parametar η :

$$\bar{\varepsilon}_D^{pl} = \varepsilon_n^{pl} exp[-1,5(\eta - 1/3)]$$
(2.26)

gdje je

 ε_n^{pl} - plastična deformacija pri pojavi oštećenja dobivena laboratorijskim ispitivanjima

 RAZVOJ OŠTEĆENJA (engl. damage evaluation) definira stupanj razvoja degradacije krutosti čelika nakon što se pojavilo prvo oštećenje. Opisuje se parametrom oštećenja D i ekvivalentnim plastičnim pomakom u
^{pl}_i.

Parametar oštećenja D je varijabla stanja oštećenja čelika te raste monotono s plastičnim deformacijama. Parametar je jednak nuli (D=0) za čelik bez oštećenja te ima vrijednost jedan (D=1) za potpuno oštećeni čelik. Parametar oštećenja D dobije se kao razlika između neoštećenog i oštećenog čelika.

$$D_i = \begin{cases} 1 - \sigma_i / \overline{\sigma}_i, & n \le i \le r \\ 1, & i = f \end{cases}$$
(2.27)

gdje je

- σ_i naprezanja u materijalu s oštećenjem (dobivena ispitivanjem materijala)
- $\bar{\sigma}_i$ naprezanja u materijalu bez oštećenja (dobivena numerički)

Ekvivalentni plastični pomak \bar{u}_i^{pl} dobije se [29]:

$$\bar{u}_i^{pl} = \bar{u}_f^{pl} \left(\varepsilon_i^{pl} - \varepsilon_n^{pl} \right) / \left(\varepsilon_f^{pl} - \varepsilon_n^{pl} \right)$$
(2.28)

gdje je

 ε_n^{pl} - plastična deformacija pri pojavi oštećenja

 ε_f^{pl} - plastična deformacija pri lomu

 \bar{u}_{f}^{pl} - ukupni ekvivalentni plastični pomak pri lomu čelika koji se dobije kao karakteristična duljina konačnog elementa L_{el} pomnožena s plastičnom deformacijom akumuliranom tijekom oštećenja čelika:

$$\bar{u}_f^{pl} = L_{el} \left(\varepsilon_f^{pl} - \varepsilon_n^{pl} \right) \tag{2.29}$$

2.3.2 Kalibracija parametara čelika

2.3.2.1 Izotropno-kinematički parametri očvršćivanja

Chabocheov model [30] očvršćivanja materijala po prvi je put u ovom doktorskom radu primijenjen za kalibraciju izotropnih i kinematičkih parametara (Q_{∞} , b, C i γ) čelika izložen cikličkom djelovanju s promjenjivim deformacijama. Rezultati laboratorijskih ispitivanja dobiveni za uzorke C_S275_09 i C_S355_06 primijenjeni su za kalibraciju spomenutih parametara očvršćivanja čelika. Ta dva uzorka imaju najstabilnije histerezne krivulje i najmanje učinke izvijanja.

Numerički model za simuliranje cikličkog ponašanja čelika u programu ABAQUS [29] modeliran je kao štapni element koji predstavlja suženi dio laboratorijskog uzorka na kojem su mjerene deformacije. Parametri *E* (Youngov modul elastičnosti), *v* (Poissonov koeficijent) i σ |₀ (početna veličina plohe popuštanja pri nultoj deformaciji) koje opisuju elastična svojstva čelika definirana su kao srednje vrijednosti istih parametara dobivene laboratorijskim ispitivanjima. Parametri očvršćivanja za oba čelika određeni su primjenom metode pokušaja i pogreške usporedbom histereznih krivulja dobivenih numeričkim simulacijama i histereznih krivulja dobivene laboratorijskim ispitivanjima. Deformacije ε koje su dobivene laboratorijskim ispitivanjima uzoraka C_S275_09 (slika 2.11) i C_S355_06 (slika 2.13) primijenjene su kao protokoli deformiranja u numeričkim simulacijama. Zadnji poluciklus stabilne histerezne krivulje dobivene laboratorijskim ispitivanjima je primijenjen za kalibraciju kinematičkih parametara očvršćivanja materijala ($C_1, C_2, C_3, \gamma_1, \gamma_2, \gamma_3$). Na slici 2.20.

prikazana je usporedba cikličkog ponašanja čelika dobivena numeričkim simulacijama i laboratorijskim ispitivanjima za oba kalibrirana uzorka. Kalibracijski parametri izotropnog i kinematičkog očvršćivanja za čelike S275 i S355 dani su u tablici 2.5.

Primjenom kalibracijskih parametara iz tablice 2.5. provedene su simulacije i za preostalih 13 protokola opterećenja (slika 2.9 do slika 2.13) koji nisu služili u postupku kalibriranja parametara. Numerička simulacija čeličnog uzorka C_S275_01 provedena je za protokol opterećenja C_S275_01 koji sadrži ukupno 32 ciklusa amplituda deformiranja, a prikazan je na slici 2.9. Numerička simulacija čeličnog uzorka C_S275_02 provedena je za protokol opterećenja C_S275_02 koji sadrži ukupno 30 ciklusa amplituda deformiranja, a prikazan je na slici 2.9. Analogno vrijedi za sve ostale uzorke čelika.

	Flastič	no	Plastično ponašanje								
Materijal	Materijal ponašanje			Kinematičko očvršćivanje			z očvr			otropno ćivanje	
-	E [MPa]	ν	σ ₀ [MPa]	C ₁ [MPa]	γ ₁	C ₂ [MPa]	γ_2	C ₃ [MPa]	γ_3	Q∞ [MPa]	b
S275	207000	0,3	285	1392	765	4240	52	1573	14	25,6	4,4
S355	185000	0,3	386	5327	75	1725	16	1120	10	20,8	3,2

Tablica 2.5 Kalibracijski parametri za čelike S275 i S355 [38]

Usporedbe između laboratorijskih ispitivanja i numeričkih simulacija za čelike S275 i S355 prikazane su na slici 2.21 i 2.22. U tablici 2.6 dana su mehanička svojstva dobivena laboratorijskim ispitivanjima i numeričkim simulacijama za oba čelika. Tablica sadrži vrijednosti Youngovog modula elastičnosti *E*, granice popuštanja f_y , vlačne čvrstoće f_u , deformacije pri vlačnoj čvrstoći ε_u , deformacija pri lomu ε_{u1} i Δf_u koja predstavlja apsolutnu devijaciju vlačne čvrstoće dobivene numerički u odnosu na vrijednosti dobivene laboratorijskim ispitivanjima. Devijacija je izračunata primjenom izraza:

$$\Delta f_u = \left| \left(\frac{f_u(FEM)}{f_u(Test)} - 1 \right) \cdot 100 \right|$$
(2.30)

Histerezne krivulje dobivene numerički (FEM) dobro se podudaraju s histereznim krivuljama koje su dobivene laboratorijskim ispitivanjima (EXP) u ciklusima u kojima nema problema izvijanja, što je prikazano na slikama 2.21 i 2.22. Numeričke simulacije pokazuju vidljivu razliku u ponašanju zadnjih par tlačnih ciklusa u kojima su se javili problemi s izvijanjem. U istim ciklusima, ponašanje u vlaku je zadovoljavajuće. Najveći

problemi s izvijanjem pojavili su se u prvih šest ispitanih uzoraka C_S275_01 do C_S275_06 koji su bili izloženi protokolima s velikim veličinama deformacija od 13,3% do -23,2%.

Slika 2.20 Usporedba numeričkih simulacija i laboratorijskih ispitivanja za kalibracijske uzorke [38]

Značajno manji problemi s izvijanjem pojavili su se u ispitnim uzorcima C_S275_07 do C_S275_09 koji su bili izloženi protokolima s veličinama deformacija od 6,9% do -6,5% te ispitnim uzorcima C_S355_01 do C_S355_06 sa veličinama deformacija od 9,2%

do -7,5%. Problemi s izvijanjem javljaju se samo u zadnjih nekoliko ciklusa pri deformacijama koje su veće od 2% za čelik S275 te pri deformacijama koje su veće od 2,8% za čelik S355.

Razlike između vrijednosti vlačnih naprezanja dobivenih numeričkim simulacijama i laboratorijskim ispitivanjima za čelik S275 iznose od 0,44% do 3,49% dok srednja vrijednost iznosi 0,86% što je prikazano u tablici 2.6. Razlike između vrijednosti vlačnih naprezanja dobivenih numeričkim simulacijama i laboratorijskim ispitivanjima za čelik S355 zauzima vrijednosti od 0,18% do 1,46% dok srednja vrijednost iznosi 0,36%. Na temelju provedene analize može se zaključiti da dobiveni parametri očvršćivanja materijala prema Chabocheovom modelu dobro opisuju ponašanje čelika S275 i S355 pod utjecajem cikličkog djelovanja s promjenjivim veličinama deformacija.

nastavak slike

Slika 2.21 Usporedba numeričkih simulacija i laboratorijskih ispitivanja za čelik S275 [38]

nastavak slike

Slika 2.22 Usporedba numeričkih simulacija i laboratorijskih ispitivanja za čelik S355 [38]

Uzorak	E [GPa]	f _y [MPa]	f _u [N	f _u [MPa]		ε _u [%]	ε _{u1} [%]
	Test	Test	Test	FEM		Test	Test
C_S275_01	206	334	459	454	1,09	9,88	-
C_S275_02	187	332	447	449	0,45	6,40	-
C_S275_03	195	279	453	447	1,32	6,38	-
C_S275_04	199	287	452	449	0,66	6,38	-
C_S275_05	195	322	459	443	3,49	6,73	-
C_S275_06	180	287	456	458	0,44	2,86	-
C_S275_07	218	289	459	453	1,31	8,10	33,67
C_S275_08	199	282	460	464	0,86	10,40	36,05
C_S275_09	199	282	460	460	0,44	9,41	35,03
Srednja vrijednost	198	299	456	453	1,12	7,39	34,92
C_S355_01	191	380	558	555	0,54	11,64	40,43
C_S355_02	190	384	559	558	0,18	3,61	29,20
C_S355_03	193	386	546	554	1,46	14,91	42,80
C_S355_04	192	379	563	560	0,53	17,61	47,62
C_S355_05	179	382	560	559	0,18	12,92	42,64
C_S355_06	185	386	563	564	0,18	13,97	43,82
Srednja vriiednost	188	383	558	558	0,51	12,44	41,09

Tablica 2.6 Rezultati laboratorijskih ispitivanja i numeričkih simulacija za čelične uzorke [38]

2.3.2.2 Parametri oštećenja

Kalibracija parametara duktilnog oštećenja čelika provedena je za čelike S275 i S355, dok je za cikličko djelovanje provedeno samo za čelik S355 budući da je ova klasa čelika primijenjena u preostalim analizama. Numerički model za kalibraciju duktilnog oštećenja pri monotonom djelovanju prikazan je na slici 2.23. Jedan kraj modela je fiksno pridržan, dok je na drugom kraju kontroliran pomak (tlak-vlak). Parametar oštećenja D kalibriran je usporedbom rezultata dobivenih laboratorijskim ispitivanjima s rezultatima numeričkih simulacija ponašanja čelika. Kalibracija duktilnog oštećenja za cikličko djelovanje provedena je na štapnom elementu pravokutnog presjeka (10x10mm) kojim je simuliran samo suženi dio uzorka materijala.

Prvo su određene vrijednosti naprezanja u čeliku $\bar{\sigma}_i$ bez modela duktilnog oštećenja. Dobivene vrijednosti korigirane su s parametrima oštećenja D tako da naprezanja odgovaraju vrijednostima dobivenim laboratorijskim ispitivanjima σ_i . Parametri za definiranje pojave i razvoja oštećenja pri numeričkim simulacijama u programu ABAQUS [29] zadani su u tabličnoj formi. Parametar oštećenja D dan je u funkciji ekvivalentnog plastičnog pomaka \bar{u}_i^{pl} . Vrijednosti za definiranje parametara čelika S275 i S355 pri monotonim djelovanjima dani su u tablicama 2.7 i 2.8, 2.9 i 2.10.

Slika 2.23 Numerički model uzorka čelika za simulacije monotonog djelovanja

Elastično ponašanje		Plastično ponašanje		
E [MPa]	ν	σ_t [MPa]	$arepsilon_t$ [-]	
		316,44	0,000000	
		316,64	0,016633	
		326,53	0,019332	
		338,19	0,021815	
199000	0,3	344,13	0,023250	
		362,02	0,027841	
		487,52	0,089126	
		560,11	0,173840	
		588,14	0,265785	

Tablica 2.7 Parametri za definiranje elastičnih i plastičnih svojstava čelika S275 za monotono djelovanje

Tablica 2.8 Parametri za definiranje modela oštećenja čelika S275 za monotono djelovanje

Po	ojava oštećenja	l	Razvoj o	štećenja
$\overline{arepsilon}_D^{pl}$	η	$\dot{arepsilon}^{pl}$	D	\overline{u}_{i}^{pl}
0,27731	0,33	0,001	0	0
0,26544	0,40	0,001	0,0065	0,0278
0,24535	0,46	0,001	0,0152	0,0538
0,23664	0,56	0,001	0,0379	0,0953
0,22654	0,61	0,001	0,0563	0,1190
0,21386	0,69	0,001	0,0862	0,1487
0,20308	0,75	0,001	0,1184	0,1740
0,19121	0,81	0,001	0,1632	0,2018
0,18206	0,87	0,001	0,2069	0,2233

Elastično ponašanje		Plastično ponašanje		
E [MPa]	ν	Naprezanja σ _t [MPa]	Deformacije $arepsilon_t[-]$	
		383,34	0,0000	
		388,61	0,0113	
		445,14	0,0234	
		515,16	0,0453	
199000	0,3	536,60	0,0547	
		559,48	0,0671	
		606,93	0,1046	
		640,26	0,1480	
		665,23	0,2270	

Tablica 2.9 Parametri za definiranje elastičnih i plastičnih svojstava čelika S355 za monotono djelovanje

Tablica 2.10 Parametri za definiranje modela oštećenja čelika S355 za monotono djelovanje

Po	ojava oštećenja	Razvoj o	štećenja	
$\overline{\varepsilon}_D^{pl}$	η	$\dot{arepsilon}^{pl}$	D	\overline{u}_{i}^{pl}
0,2270	0,32	0,001	0	0
0,2070	0,50	0,001	0,0105	0,0580
0,1945	0,60	0,001	0,0305	0,0965
0,1822	0,70	0,001	0,0625	0,1346
0,1755	0,76	0,001	0,0872	0,1562
0,1676	0,82	0,001	0,1183	0,1788
0,1562	0,90	0,001	0,1701	0,2087
0,1502	0,95	0,001	0,2147	0,2295
0,1480	0,97	0,001	0,2304	0,2355

Na slici 2.24 prikazane su usporedbe numeričkih simulacija ponašanja čelika S275 i S355 pri monotonom vlačnom djelovanju u usporedbi sa srednjim vrijednostima rezultata laboratorijskih ispitivanja. Vrijednost vlačne čvrstoće pri numeričkim simulacijama čelika S275 iznosi 469 MPa što se razlikuje za 0,42% od laboratorijskih rezultata, dok za čelik S355 iznosi 550 MPa te odstupa za 0,36% od laboratorijski dobivene vrijednosti. Dobivena su zadovoljavajuća podudaranja te se dani parametri mogu koristiti pri simulacijama monotonog ponašanja modela koji primjenjuju ova dva čelika.

Slika 2.24 Usporedba numeričkih simulacija i laboratorijskih ispitivanja za čelike S275 i S355 pri monotonom vlačnom djelovanju

U tablici 2.11 dani su parametri za definiranje svojstava čelika S355 s oštećenjem pri cikličkim djelovanjima. Parametri za definiranje elastičnih i plastičnih svojstava dani su u prethodnom poglavlju za oba čelika. Na slici 2.25 prikazana je usporedba numeričkih i laboratorijskih ponašanja čelika S355 pri cikličkom djelovanju. Pokazala su se zadovoljavajuća podudaranja u području pada čvrstoće uslijed pojave oštećenja u

materijalu. U području nastupanja loma u čeliku vrijednost deformacije dobivena numerički iznosi 45,4% te pokazuje neznačajno odstupanje od 3,65% u odnosu na laboratorijske rezultate. Otpornost pri lomu ne pokazuje nikakva odstupanja u odnosu na laboratorijski izmjerene vrijednosti. Definirani parametri daju zadovoljavajuće rezultate te se mogu koristiti pri daljnjim simulacijama konstrukcijskih elemenata koji su izvedeni od čelika S275JR i S355J2+M.

Po	ojava oštećenja		Razvoj	oštećenja
$\overline{arepsilon}_D^{pl}$	η	$\dot{arepsilon}^{pl}$	D	\overline{u}_{i}^{pl}
0,63080	0,33	0,001	0,0037	0,0000
0,62491	0,38	0,001	0,0085	0,4719
0,61874	0,43	0,001	0,0243	0,9666
0,61244	0,48	0,001	0,0623	1,4716
0,60607	0,52	0,001	0,1293	1,9823
0,59963	0,57	0,001	0,2386	2,4987
0,59310	0,61	0,001	1,0000	3,0220

Tablica 2.11 Parametri modela oštećenja čelika S355 za cikličko djelovanje

Slika 2.25 Usporedba numeričke simulacije i laboratorijskih ispitivanja za čelik S355 pri cikličkom djelovanju

3 ISTRAŽIVANJE CIKLIČKIH SVOJSTAVA PRIKLJUČAKA

3.1 Uvod

Ponašanje priključaka ima značajan utjecaj na ponašanje okvira i mora se uzeti u obzir u globalnom proračunu okvira i pri dimenzioniranju njegovih konstrukcijskih elemenata (stupova i greda). Pri projektiranju čeličnih okvirnih konstrukcija priključke se tradicionalno razmatra kao zglobne ili kao potpuno krute. Takav pristup samo pojednostavnjuje proračun, ali ne opisuje njeno stvarno ponašanje. Prema početnoj rotacijskoj krutosti, priključci se mogu razvrstati u tri područja [56], slika 3.1. Prvo područje odnosi se na krute priključke, a kriteriji se razlikuju ovisno o tipu okvira (pridržan ili nepridržan okvir). Treće područje su zglobni priključi, dok se između nalazi područje kojem pripadaju djelomično nepopustljivi priključci.

Slika 3.1 Razredba priključaka prema rotacijskoj krutosti

Na primjeru zavarenog priključka stupa i grede prikazana je razredba prema rotacijskoj krutosti, što je detaljno dano u radu [57]. Provedena je numerička simulacija zavarenog priključka na utjecaj monotonog savijanja iz čega je dobivena krivulja odnosa momenta savijanja i rotacije ($M - \phi$), slika 3.2.

Linearni dio krivulje definira početnu rotacijsku krutost $S_{j,ini}$, te je na temelju njenog položaja na grafu definirano područje kojem pripada prema prethodnoj razredbi. Crvena linija na grafu predstavlja gornju granicu djelomično nepopustljivog priključka ili 1. područje, dok narančasta linija predstavlja donju granicu djelomično nepopustljivog priključka ili 3. područje. Zavareni priključak stupa i grede nalazi se između ta dva područja i pripada području djelomično nepopustljivih priključaka (2. područje).

Slika 3.2 Prikaz numeričkog modela zavarenog priključka stupa i grede razredba zavarenog priključka prema rotacijskoj krutosti, Krolo i suradnici, 2015 [57]

Razredba prema rotacijskoj krutosti također je prikazana i za dva vijčana priključka, slika 3.3 pri čemu je početna rotacijska krutost $S_{j,ini}$ izračunata primjenom izraza koji je predložila grupa znanstvenika a nastala kao rezultat istraživanja provedenih u sklopu Leonardo da Vinci projekta, 2003 [58]. U okviru projekta predložen je preliminarni proračun krutosti priključaka kojim se predviđa ponašanje priključaka, a temelji se na krutosti najslabije komponente u priključku. Proračun vrijedi samo za priključke primarnih greda na stup opterećenih savijanjem te priključak stupa na temelj opterećen savijanjem. Početna rotacijska krutost priključka računa se prema sljedećem izrazu:

$$S_{j.ini} = \frac{Er^2 t_{fc}}{\xi} \tag{3.1}$$

gdje je

E - modul elastičnosti čelika

r - krak sile, slika 3.3

 t_{fc} - debljina pojasnice stupa ili čelne ploče (uzima se tanji lim)

 ξ - koeficijent koji je dobiven laboratorijskim ispitivanjima karakterističnih priključaka, a dani su u [58]

Slika 3.3 Vijčani priključci stupa i grede: a) jednostrani priključak, b) dvostrani priključak

Dobivene vrijednosti početnih rotacijskih krutosti priključaka i njihova razredba prema rotacijskoj krutosti [56] prikazane su u tablici 3.1. Oba priključka pripadaju područjima djelomično nepopustljivih priključaka.

	Početna	Razredb	a priključaka prema rotacijsk	oj krutosti		
	krutost	Kruti	Djelomično nepopustljivi	Zglobni		
Priključak	[kNm]	[kNm]	[kNm]	[kNm]		
	$S_{j.ini} = \frac{Er^2 t_{fc}}{\xi}$	$S_{j.ini} \ge 8 \frac{EI_b}{L_b}$ $S_{j.ini} \ge 19138,56$	$0.5 \frac{EI_b}{L_h} < S_{j.ini} < 8 \frac{EI_b}{L_h}$ 1196,16 < $S_{j.ini} < 19138,56$	$S_{j.ini} < 0.5 \frac{EI_b}{L_b}$ $S_{j.ini} < 1196,16$		
Priključak 1	10920	×	\checkmark	×		
Priključak 2	18928	*	\checkmark	*		
$E = 210 \text{ GPa}; t_{fc} = 10 \text{ mm}; \xi = 13 \text{ (Priključak 1)}; \xi = 7,5 \text{ (Priključak 2)}; I_b = 5696 \text{ cm}^4; L_b = 5 \text{ m}$						

Tablica 3.1 Razredba vijčanih priključaka prema rotacijskoj krutosti

Provedbom prethodnih istraživanja na primjerima zavarenog i vijčanog priključka, može se zaključiti da je rotacijsko ponašanje priključaka najčešće u području između dva ekstrema, između krutih i zglobnih priključaka. To znači da ponašanje okvira primjenom tradicionalnog pristupa može biti netočno i predstavlja granični slučaj realnog ponašanja. Stoga, priključci imaju svoju stvarnu krutost te se svrstavaju u djelomično nepopustljive, a njihovo ponašanje ima značajan utjecaj na nosivost,

krutost i stabilnost čitave konstrukcije kao i na trošenje energije koja se unosi u konstrukciju tijekom potresa. Moment savijanja i relativna rotacija djelomično nepopustljivog priključka povezani su odnosom koji ovisi o svojstvima priključka. Učinak koji imaju djelomično nepopustljivi priključci umjesto krutih ili zglobnih priključaka nije samo modificiranje pomaka nego i raspodjela i veličina unutarnjih sila i momenata savijanja u konstrukciji.

Za potresni proračun okvira u Eurokodu 8 [59] propisuju se pravila za proračun i oblikovanje priključaka prema rotacijskom kapacitetu te se navodi da bi priključak trebao biti projektiran na način da rotacijski kapacitet područja trošenja potresne energije ne bude manji od 35 mrad za konstrukcije velikog razreda duktilnosti (DCH), odnosno 25 mrad za konstrukcije umjerenog razreda duktilnosti (DCM). Međutim, nisu dane detaljnije smjernice na koji način obuhvatiti stvarno ponašanje priključka u čeličnom okviru, koji bi uzeo u obzir konfiguraciju i tip priključka. Stoga su za odabrani tip vijčanih priključaka provedene numeričke simulacija na utjecaj cikličkog djelovanja na temelju čega je dalje predložen model histerezne anvelope koji se dalje primjenjuje pri projektiranju čeličnih okvira na utjecaj potresa primjenom nelinearne statičke metode N2.

3.2 Numeričke simulacije priključaka

Numeričke simulacije temeljene na metodi konačnih elemenata (MKE) uvelike se primjenjuju za definiranje mehaničkih svojstava priključaka. Njihova upotreba započela je zbog nekoliko razloga: zbog skupoće laboratorijskih ispitivanja racionalnije je primjenjivati numeričke simulacije, za bolje razumijevanje važnih lokalnih učinaka koje je teško mjeriti laboratorijski, npr. kontaktne sile između vijaka i spojenih elemenata; za provođenje opsežnih parametarskih studija itd. [60]. Prvi trodimenzionalni numerički model priključka sa čelnom pločom razvili su Krishnamurty i Graddy, 1976. godine [61] koji su analizirani na utjecaje monotonog savijanja. Nakon toga su provedene brojne numeričke simulacije s ciljem što preciznije procjene ponašanja priključaka na utjecaj monotonog djelovanja [62, 63, 19, 20, 17, 6, 64, 65, 66, 67].

Međutim, zbog složenih kontakata između spojenih elemenata i izrazito nelinearnog ponašanja, numerička simulacija cikličkog ponašanja priključka s čelnom pločom je znatno složenija. Stoga, takvih simulacija nema mnogo i provedene su uglavnom u novije vrijeme. Gerami i suradnici, 2011. godine [68] su proveli numeričke simulacije
za četrnaest vijčanih priključaka s čelnim pločama i T-elementima na utjecaj cikličkog djelovanja u kojima variraju horizontalni i vertikalni raspored vijaka. Wang i suradnici, 2013. godine [23] su istraživali utjecaj konfiguracije priključaka na cikličko ponašanje, dok su Kiamanesh i suradnici, 2013. godine [18] analizirali učinke kružnog rasporeda vijaka na ponašanje priključka te pokazali usporedbu s tradicionalnim kvadratnim rasporedom vijaka.

U tablici 3.2 dan je pregled numeričkih modela priključaka koji su analizirani na utjecaje monotonog i cikličkog djelovanja. Detaljan pregled obuhvaća podatke o oblikovanju priključaka, podatke o odabranim tipovima konačnih elemenata kojima su modelirane pojedine komponente priključaka, modeliranje kontakata između spojenih elemenata, oblikovanje vijaka te simuliranje prednapinjanja vijaka, definiranje geometrijske i materijalne nelinearnosti, tip vanjskog opterećenja, te su dani nazivi programskih paketa u kojima su provedene numeričke simulacije. Provedenom detaljnom analizom utvrđeno je da niti jedan od dosada razvijenih numeričkih modela priključaka ne obuhvaća cjelovita ciklička svojstva čelika koji obuhvaća degradaciju čvrstoće nakon dostizanja najveće čvrstoće te mogućnost loma nakon razvoja oštećenja.

Kako bi simulirali ponašanje priključaka na utjecaj monotonog i cikličkog djelovanja, u ovom radu razvijen je trodimenzionalni numerički model primjenom metode konačnih elemenata. Prvo su razvijeni numerički modeli priključaka za simulacije monotonog i cikličkog savijanja prema podatcima laboratorijski ispitanih priključaka autora Shi i suradnici, 2007 i 2010 [7, 69]. Svojstva ovih numeričkih modela poslužila su kao temelj za razvoj novih modela priključaka te je analizirano ukupno devet modela s različitim debljinama čelnih ploča t i različitim vertikalnim razmacima između redova vijaka p na čelnim pločama. Pri numeričkom modeliranju priključaka primijenjeni su sljedeći parametri: geometrijska i materijalna nelinearnost osnovnih dijelova priključka, prednapinjanje vijaka, kontakti između pojasnice stupa i čelne ploče, kontakti između podložnih pločica i pločastih elemenata priključka (pojasnica stupa/čelna ploča), kontakti tijela vijka i rupe i trenje između spojenih elemenata. Utjecaj proklizavanja između vijka i ploče, zavari, imperfekcije te utjecaj okoline nisu uzeti u obzir u modelu. S obzirom na simetričnost modela oko vertikalne osi koja prolazi kroz hrptove stupa i grede, modelirana je samo polovica priključka. U nastavku su prvo prikazani kalibracijski numerički modeli priključaka, nakon čega su detaljno definirana svojstva vlastitih priključaka s detaljnim opisom numeričkih modela.

Tablica 3.2 Pregled numeričkih modela priključka stupa i grede s čelnom pločom

		Broj				Тір	o konačnog	g elementa					Znač	ajke analize				
Autor/i (godina)	Oblik čelne ploče	vijaka u vlačnoj zoni	Ukrute čelne ploče	Ukrute stupa	Čelna ploča	Stup	Greda	Glava	Vijak Tijelo viika	Matica	Kontakt	Kontaktno proklizavanje	Kontakt	Vijci Prednapinjanje	Ne Geo	linearnost Mat	Tip opterećenja	Program
Krshnamurthy, 1976 [61]	Produljena čelna ploča	4	-	-	Solid Plane stress	=		-	Solid Plane stress	-	=	=	Ξ	ቀ ቀ	Ξ	_	monotono	*
Sherbourne & Bahaari, 1994 [62]	Produljena čelna ploča	4	-	÷	Shell	Shell	Shell	Solid	Truss	Solid	•	Coulombovo trenje	_	_	÷	\$	monotono	ANSYS
Bahaari & Sherbourne, 1996 [63]	Produljena čelna ploča	4	-	-	STIF 43	STIF 43	STIF 43	STIF 45	Truss	STIF 45	•	Coulombovo trenje		-	•	•	monotono	ANSYS
Choi & Chung, 1996 [19]	Obostrano produljena čelna ploča	4	-	_	Solid	_	Solid	Solid	Solid	Solid	-	-	÷	Simulirano primjenom tlačne sile	÷	+	monotono	ADINA
Bursi & Jaspart, 1998 [20]	Jednostrano i obostrano produljena čelna ploča	4	_	_	C3D8R	_	C3D8R	C3D8R	C3D8R	-	•	÷	.	4	÷	•	monotono	ABAQUS, LAGAMINE
Bahaari & Sherbourne, 2000 [17]	Obostrano produljena čelna ploča	8	+	-	STIF 43	-	STIF 43	-	Truss	-	4	+	-	Početne deformacije	*	trilinearni model	monotono	ANSYS
Abolmaali i dr. 2005 [6]	Ploča u visini priključene grede	2	_	_	Solid	Solid	Solid	Solid	Solid	Solid	•	•	.	3D linijski element	÷	bilinearni model	monotono	ANSYS
Maggi i dr., 2005 [64]	Produljena čelna ploča	4	_	-	SOLID 45	SOLID 45	SOLID 45	SOLID 45	SOLID 45	SOLID 45	•	*	4	temperaturni gradijent	÷	multilinearni model	monotono	ANSYS
Kukreti & Zhou, 2006 [65]	Obostrano produljena čelna ploča	8	÷	÷	Solid	Solid	Solid	Solid	Solid	Solid	-	-	4	÷	×	trilinearni model	monotono	*

Nastavak tablice 3.2

		Broj				Tip konačnog elementa					Značajke analize							
Autor/i (godina)	Oblik čelne	vijaka	Ukrute	Ukrute	Ŏ. I				Vijak			Kantaldua		Vijci	Ne	elinearnost	Tin onterećenia	Program
Autom (gouina)	ploče	vlačnoj zoni	ploče	stupa	ploča	Stup	Stup Greda	Glava	Tijelo vijka	Matica	Kontakt	proklizavanje	Kontakt	Prednapinjanje	Geo	Mat	np optorooonju	riogram
Shi i dr., 2008 [66]	Ploča u visini priključene grede Obostrano produljena čelna ploča	2		ት	SOLID 92	SOLID 92	SOLID 92	SOLID 92	SOLID 92	SOLID 92	surface to surface contact	Coulombovo trenje	÷	•	•	trilinearni model	monotono	ANSYS
Díaz i dr., 2011 [67]	Produljena čelna ploča	4	-	-	SOLID 45	SOLID 45	SOLID 45	SOLID 45	SOLID 45	SOLID 45	4	ф	÷	4	÷	÷	monotono	ANSYS
Mashaly i dr., 2011 [70]	Produljena čelna ploča Obostrano produljena čelna ploča	4	+ 	- +	SHALL 43	SHALL 43	SHALL 43	SOLID 45	LINK 8	SOLID 45	♣ surface to surface contact	♣ Coulombovo trenje	♣ surface to surface	4	÷	trilinearni model	monotono cikličko	ANSYS
Gerami i dr., 2011 [68]	Obostrano produljena čelna ploča	8	-	÷	SOLID 45	SOLID 45	SOLID 45	SOLID 45	SOLID 45	SOLID 45	Surface to surface contact	Coulombovo trenje	surface to surface	temperaturni gradijent	÷	trilinearni model	cikličko	ANSYS
Kiamanesh i dr., 2013 [18]	Obostrano produljena čelna ploča	8	-	-	C3D8R	C3D8R	C3D8R	C3D6	C3D6	C3D6	4	Coulombovo trenje	♣ hard contact	ф	÷	trilinearni model	monotono cikličko	ABAQUS
Wang i dr.,2013 [23]	Obostrano produljena čelna ploča	8	÷	÷	C3D8I	C3D8I	C3D8I	C3D8I	C3D8I	C3D8I	Surface to surface contact	Coulombovo trenje	hard contact	🕂 tlačna sila	÷	Chaboche isotropno- kinematički model materijala	cikličko	ABAQUS
Oznake: 🕂	Uključeno u analizu	-	nije uklju analizu	ičeno u	*	nije pozr podatak	nat	Napome naveden	na: Nazivi Iom progra	na englesk mu	om označav	/aju funkciju u						
STIF 43 (ANSYS) – četverostrani ljuskasti konačni element				LINK 8	– 3D reše	tkasti eler	ment											
STIF 45 (ANSYS) -	- osmočvorni izo	parametars	ski solid ko	onačni ele	ement			C3D8R – osmočvorni (brick) konačni element sa reduciranom integracijom										
SOLID 45 (ANSYS) – inkopantibilni osmočvorni konačni element s reduciranom integracijom				C3D8I – inkopatibilni osmočvorni konačni element														
SOLID 92 (ANSYS)) – 10-čvorni tetr	aedarski ko	onačni ele	ment				C3D6 –	šestočvo	rtni prizma	atični konač	čni element						

3.2.1 Kalibracija numeričkog modela priključka

U ovom dijelu rada prikazana je kalibracija numeričkih modela priključaka s obostrano produljenim čelnim pločama. Razvijeni su numerički modeli priključka čiji su rezultati uspoređeni s rezultatima laboratorijskih ispitivanja koje su proveli Shi i suradnici [69, 7]. Numerički model razvijen je za priključak koji je laboratorijski ispitani i ima sljedeća svojstva: greda H-poprečnog presjeka H-300x200x8x12 mm, stup H-poprečnog presjeka H-300x250x8x12 mm, uzorci su izvedeni od čelika Q345B. Za spajanje čelne ploče na pojasnicu stupa primijenjeni su visokovrijedni prednapeti vijci M20 kvalitete čelika 10.9. Vrijednost sile prednapinjanja iznosi 155 kN dobivenih prema kineskoj normi JGJ82-91. Koeficijent trenja izmjeren na kontaktnim plohama iznosi 0,44. Debljina pojasnice stupa jednaka je debljini čelne ploče na području 100 mm iznad gornjeg ruba čelne ploče i 100 mm ispod donjeg ruba čelne ploče. Shematski prikaz eksperimenta na kojem su utemeljeni numerički modeli prikazan je na slici 3.4. Dodatni podatci o ispitivanju dostupni su u [7].

Slika 3.4 Shematski prikaz laboratorijskog ispitivanja priključka [mm] [7]

Svojstva čelika za modeliranje monotonog i cikličkog odziva priključaka se razlikuju. Za modeliranje monotonog ponašanja priključaka odabran je trilinearni odnos naprezanja i deformacija čeličnih elemenata. Svojstva materijala preuzeta su od autora Shi i suradnici, 2010 [69]. Granica popuštanja te vlačna čvrstoća za čelične limove deblje od 16 mm iznose 363 MPa i 537 MPa, dok vrijednost Youngovog modula elastičnosti iznosi 204227 MPa. Granica popuštanja te vlačna čvrstoća za čelične limove tanje ili jednake 16 mm iznose 391 MPa i 559 MPa, dok vrijednost Youngovog modula iznosi 190707 MPa. Vrijednost Poissonovog koeficijenta iznosi 0,3 dok je Youngov modul elastičnosti za vijke iznosi 206000 MPa. Za modeliranje cikličkog ponašanja priključaka odabran je izotropno-kinematički model čelika, a parametri su preuzeti iz rada [23] te su dani u tablici 3.3. Za definiranje odnosa naprezanja i deformacija čelika za visokovrijedne vijke također je odabran trilinearni model materijala, a svojstva materijala preuzeta su također iz rada [23] te su vrijednosti dane u tablici 3.4. Trilinearni odnos naprezanja i deformacija materijala za simulacije monotonog djelovanja na priključku prikazan je na slici 3.5.

Tablica 3.3 Svojstva čelika Q345B [23]

	Flasti	ično				P	Plastičr	no ponaš	anje				
Mat.	ponaš	anje		Kinematičko								Izotro	ono /anie
	E [GPa]	ν	σ ₀ [MPa]	C ₁ [MPa]	γ_1	C ₂ [MPa]	γ ₂	С ₃ [MPa]	γ ₃	C ₄ [MPa]	γ ₄	Q_{∞} [MPa]	b
Q345B	207	0,3	363,3	7993	175	6773	116	2854	34	1450	29	21	1,2

Tablica 3.4 Svojstva čelika 10.9 za visokovrijedne vijke [23]

Slika 3.5 Odnosi naprezanja i deformacija za čelične elemente i vijke

Provedene su numeričke simulacije priključka pod utjecajem monotonog i cikličkog djelovanja. Monotono djelovanje postignuto je kontroliranim povećanjem nametnutog pomaka na kraju grede na kraku od 1200 mm, a pomak je povećavan do najveće vrijednosti od 125 mm. Krak predstavlja udaljenost od položaja djelujuće sile do ruba pojasnice stupa, što je prikazano na slici 3.6. Na gornjem i donjem rubu stupa simulirana je i konstantna uzdužna sila od 485 kN koja djeluje po cijelom poprečnom presjeku po uzoru na provedena laboratorijska ispitivanja, slika 3.4. Cikličko djelovanje simulirano je prema protokolu opterećenja koji je prikazan na slici 3.7.

Slika 3.6 Shematski prikaz modela priključka s prikazom dimenzija, unosa djelovanja i rubnim uvjetima [mm]

Na slici 3.8 prikazan je numerički model kalibracijskog priključka. Svi detalji o oblikovanju kalibracijskih numeričkih modela (odabir konačnih elemenata, modeliranje kontakata, prednapinjanje vijaka) dalje su primijenjeni za oblikovanje numeričkih modela priključaka koji su prikazani u nastavku ovog rada. Kako bi se izbjeglo ponavljanje, navedeni detalji o oblikovanju modela prikazani su samo na novim

priključcima u dijelu 3.2.2. Oblikovanje kalibracijskih modela priključaka može se vidjeti u radu autora Krolo i suradnici, 2016 [71].

Slika 3.7 Protokol opterećivanja za simulacije cikličkog djelovanja na priključcima

Slika 3.8 Numerički model kalibracijskog priključka

Ponašanje priključka stupa i grede prikazano je u obliku krivulje odnosa momenta savijanja i rotacije $(M - \phi)$, slika 3.9. Crvene krivulje predstavljaju rezultate dobivene numeričkim simulacijama monotonog i cikličkog ponašanja priključaka, a uspoređene su s rezultatima laboratorijskih ispitivanja prema [7, 69]. Vrijednosti najveće otpornosti priključka na savijanje i pripadajuća djelujuća sila prikazani su u tablici 3.5. Rezultati dobiveni numeričkim simulacijama za monoton odziv priključaka daju zadovoljavajuće rezultate s neznatnim odstupanjima, dok su za simulacije cikličkog djelovanja razlike u nosivosti jednake 5,89%, a otpornost na savijanje je za 1,03% manja od vrijednosti dobivenih laboratorijskim ispitivanjima. Nakon dostizanja najveće čvrstoće model ne

može opisati degradaciju koja se javlja u realnom modelu. Stoga su ovi nedostatci uklonjeni pri modeliranju vlastitih priključaka te su uzeta u obzir ponašanja čelika koji obuhvaća i model oštećenja, a detaljno su pojašnjeni u dijelu 3.2.2.

Vrsta	Numeri	čki model	Laboratorijski test prema Shi i suradnici [69, 7]			
djelovanja	Djelujuća sila [kN]	Otpornost na savijanje [kNm]	Djelujuća sila [kN]	Otpornost na savijanje [kNm]		
Monotono	256,89	308,28	256,9	308,3		
Cikličko	237,89	285,47	251,9	288,4		

b)

Slika 3.9 Usporedbe odnosa momenta savijanja i rotacije priključaka $(M - \phi)$ dobivenih numeričkim simulacijama s rezultatima laboratorijskih ispitivanja za a) monotono djelovanje i b) cikličko djelovanje

Na slici 3.10 prikazani su oblici otkazivanja priključaka dobivenih numeričkim simulacijama pri monotonom i cikličkom savijanju te su uspoređeni s laboratorijski ispitivanim priključcima.

b)

d)

Slika 3.10 Oblik otkazivanja priključka pri monotonom djelovanju: a) Numerički model, b) Laboratorijski uzorak prema Shi i suradnici [69] te pri cikličkom djelovanju c) Numerički model i d) Laboratorijski uzorak prema Shi i suradnici [7]

3.2.2 Numerički modeli priključaka

c)

U ovom dijelu dan je detaljan prikaz razvoja vlastitih numeričkih modela koji su dalje primijenjeni u daljnjim analizama. Analizirano je ukupno devet modela s različitim debljinama čelnih ploča *t* i različitim vertikalnim razmacima između redova vijaka *p* na čelnim pločama. Priključci su modelirani na način da pri deformiranju konstrukcije u potresu upravo oni preuzimaju sve plastične deformacije, a ne elementi kao što su stupovi i grede. To znači da su projektirani kao djelomično nepopustljivi s otpornošću najviše jednakom ili manjom od otpornosti priključene grede [59]. Odnos između otpornosti stupova u odnosu na otpornosti greda mora biti najmanje 30% veći kako bi

se zadovoljio kriterij "jaki stup - slaba greda" pri dimenzioniranju ovakvih tipova okvira [59].

3.2.2.1 Geometrijska svojstva

Priključak se sastoji od: čelične grede, stupa, obostrano produljene čelne ploče, ukruta hrpta stupa i visokovrijednih prednapetih vijaka. Greda poprečnog presjeka HEA360 duljine 120 cm zavarena je za čelnu ploču koja je potom spojena za pojasnicu stupa poprečnog presjeka IPE400 duljine 300 cm s 8 visokovrijednih prednapetih vijaka M22, kvalitete čelika 10.9. Vijci su raspoređeni simetrično s obzirom na pojasnice grede, a konfiguracija i geometrijski parametri priključka stupa i grede prikazani su na slici 3.11. Pločasti dijelovi priključka izvedeni su od čelika S355.

U tablici 3.6 dan je popis za devet modela priključaka sa vrijednostima debljina čelnih ploča i vertikalnim razmacima između redova vijaka dok su u tablici 3.7. dani podatci o presjecima stupa i grede.

Grupe priključaka	Naziv modela priključka	Debljina čelne ploče t [mm]	Razmak između vijaka $p \ [$ mm]
	EP1_1_M / EP1_1_C	15	130
1	EP1_2_M / EP1_2_C	15	140
	EP1_3_M / EP1_3_C	15	150
	EP2_1_M / EP2_1_C	17	130
2	EP2_2_M / EP2_2_C	17	140
	EP2_3_M / EP2_3_C	17	150
	EP3_1_M / EP3_1_C	20	130
3	EP3_2_M / EP3_2_C	20	140
	EP3_3_M / EP3_3_C	20	150

Tablica 3.6 Detalji o priključcima

Prvi broj u nazivu modela priključka označava oznaku debljine čelne ploče 1=15 mm; 2=17 mm; 3=20 mm Drugi broj u nazivu modela priključka označava oznaku vertikkalnih razmaka između redova vijaka na čelnoj ploči 1=130 mm; 2=140 mm; 3=150 mm Oznaka M – simulacija monotonog djelovanja na priključku

Oznaka M – simulacija monotonog djelovanja na priključku Oznaka C – simulacija cikličkog djelovanja na priključku

Tablica 3.7 Podatci o poprečnim presjecima stupa i grede [72]

Element/Poprečni presjek	Visina presjeka h [mm]	Širina pojasnice b [mm]	Debljina pojasnice t _f [mm]	Debljina hrpta t _w [mm]
Greda/IPE400	400	180	13,5	8,6
Stup/HEA360	350	300	17,5	10

a)

Slika 3.11 Podatci o priključcima a) geometrija priključka EP1_1; dimenzije čelnih ploča sa prikazom vertikalnih razmaka između redova vijaka za b) p=130 mm; c) p=140 mm ii d) p=150 mm

3.2.2.2 Svojstva materijala

Za modeliranje pločastih elemenata priključka primijenjena su dva modela materijala. Jedan za slučaj monotonog djelovanja na priključak, a drugi za slučaj cikličkog djelovanja. Za simuliranje monotonog djelovanja primijenjen je izotropni multilinearni model materijala koji obuhvaća područje očvršćivanja između popuštanja materijala i dostizanja vlačne čvrstoće. Kada se definiraju plastična svojstva čelika u ABAQUSU [29], moraju se koristiti stvarne vrijednosti naprezanja σ_t (engl. true value of stress) i stvarne vrijednosti deformacija ε_t (engl. true value of strain). Odnos između stvarnih naprezanja σ_t i deformacija ε_t u odnosu na nominalne (izmjerene) vrijednosti naprezanja i deformacija (σ_{nom} i ε_{nom}) definiran je sljedećim izrazima:

$$\sigma_t = \sigma_{nom}(1 + \varepsilon_{nom}) \qquad \varepsilon_t = \ln(1 + \varepsilon_{nom}) \tag{3.2}$$

Nominalne vrijednosti dobivene su kao srednje vrijednosti laboratorijskim ispitivanjima čelika, granica popuštanja iznosi 384 MPa, vlačna čvrstoća je 552 MPa, Youngov modul elastičnosti iznosi E = 199000 MPa dok je Poissonov koeficijent jednak v = 0,3. Plastična svojstva čelika dana su u tablici 2.9 te su prikazana na slici 3.12. Za simuliranje cikličkog djelovanja primijenjen je kombinirani izotropno-kinematički model očvršćivanja materijala. Kalibracijski parametri materijala S355 za primjenu u programu ABAQUS [29] prikazani su u tablici 2.5. Primijenjen je i model oštećenja za čelik S355, a vrijednosti parametara dane su u tablici 2.11. Izotropni model očvršćivanja materijala također je korišten i za definiranje svojstva materijala visokovrijednih vijaka, a vrijednosti parametara usvojene su od autora Wang i suradnici [23] te su dane u tablici 3.4.

Slika 3.12 Plastična svojstva čelika

3.2.2.3 Formiranje numeričkog modela s konačnim elementima

Stup, greda i čelna ploča modelirani su s linearnim osmočvornim heksagonalnim (brick) konačnim elementima C3D8I. Ovo je inkompatibilni tip konačnog elementa koji koristi punu integraciju te ima dodatnih 13 stupnjeva slobode u odnosu na C3D8 konačne elemente s punom integracijom. Pri rješavanju problema u kojima je savijanje dominantno, rubovi C3D8 konačnog elementa nemaju sposobnost savijanja. To znači da se primjenom takvih elemenata energija deformacija generira u obliku posmičnih deformacija umjesto fleksijskih deformacija te se javlja problem "shear locking" koji utječe na stvaranje prekomjerne krutosti uslijed djelovanja savijanja. U konačnici može davati krive i netočne rezultate pomaka, naprezanja itd. Za rješavanje "shear lockinga" te povećanja kompjuterske efikasnosti često se primjenjuju C3D8R konačni elementi s reduciranom integracijom. Pri savijanju konačnog elementa, normalna i posmična naprezanja u integracijskoj točki su nula što znači da nema energije deformiranja i javlja se problem zvan "hourglassing", što u stvarnosti nije tako. Nulta energija deformiranja daje nestvarno ponašanje te se manifestira kao prekomjerna fleksibilnost konstrukcije. Zbog toga su primijenjeni inkompatibilni C3D8I konačni elementi s punom integracijom koji će izbjeći i problem "shear-lockinga" i "hourglassinga". Za modeliranja vijaka odabrani su linearni šestočvorni C3D6 konačni elementi. To su trokutne prizme s punom integracijom. Glava vijka i matica su modelirane su kao jedan "part" zajedno s tijelom vijka i podložnim pločicama s obiju strana vijka. Navoji na tijelu vijka te produženi dio vijka izvan matice su zanemareni. Mreža je progušćena na mjestima gdje se ostvaruju kontakti između elemenata. Detalji mreže konačnih elemenata za vijak i čelnu ploču prikazani su na slici 3.13, dok je mreža konačnih elemenata za cijeli priključak sa stupom i gredom prikazana na slici 3.14.

nastavak slike

Slika 3.13 Prikaz mreže konačnih elemenata: a) vijak (2080 konačnih elemenata), b) čelna ploča debljine 15 mm (3060 konačnih elemenata)

b)

Slika 3.14 Prikaz mreže konačnih elemenata priključak stupa i grede sa obostrano produljenom čelnom pločom (19570 konačnih elemenata)

3.2.2.4 Modeliranje kontaktnih područja

Točnost numeričkih modela uvelike ovisi o svojstvima kontakata između spojenih komponenata priključaka te o prednapinjanju vijaka. U priključcima koji su spojeni prednapetim vijcima, naprezanja između elemenata prenose se trenjem između spojenih dijelova dok se spajanjem elemenata običnim vijcima naprezanja prenose posmikom vijaka. Stoga je modeliranju kontakata posvećena posebna pozornost. U priključku stupa i grede modelirana su sljedeća kontaktna područja:

- 1. Kontakt između čelne ploče i pojasnice stupa
- 2. Kontakti između podložne pločice vijka i čelne ploče
- 3. Kontakti između podložne pločice i pojasnice stupa
- 4. Kontakti između tijela vijka i rupe

Kontaktna područja modelirana su na način da su prvo definirane plohe između kojih se ostvaruje kontakt za što je odabrana "small sliding surface-to-surface" diskretizacijska metoda. Za svako kontaktno područje definirana su svojstva koja će omogućiti prijenos sila i naprezanja s jednog elementa na drugi. U kontaktnom području 1 javljaju se trenje i normalna naprezanja. Stoga je za modeliranje trenja na kontaktu odabrana Penalty formulacija te vrijednost koeficijenta trenja iznosi 0,44. Odabrani koeficijent trenja odgovara izmjerenoj vrijednosti na kontaktnim plohama koje su dobivene u eksperimentu [7] i primijenjene u kalibracijskom numeričkom modelu. Za modeliranje normalnih naprezanja odabran je "hard" kontakt koji za rješavanje koristi proširenu Lagrangeovu formulaciju. Iste kontaktne formulacije primijenjene su i za modeliranje zone 2 i 3. Tangencijalna komponenta između tijela vijka i rupe u zoni 4 modelirana je bez trenja primjenom modula "Frictionless". Kontakti između vijka i pločastih elemenata prikazani su na slici 3.15.

a)

nastavak slike

Slika 3.15 Kontakti između vijaka i pločastih elemenata priključka: a) i b) su "friction" i "hard" kontakti; c) i d) su "frictionless" kontakti [71]

Osim kontaktnih svojstava također je važno definirati svojstvo ploha u pojedinom kontaktu ("master" i "slave" plohe). Budući da su vijci obično krući od ostalih čeličnih elemenata, onda se plohe vijaka obično definiraju kao "master" ploha u kontaktnom paru, dok ostali elementi imaju svojstvo "slave" plohe, slika 3.16. U kontaktu podložne pločice i čelne ploče, podložna pločica (vijak) je definirana kao "slave" ploha.

M-"master" ploha S-"slave" ploha

Slika 3.16 Definiranje "master" i "slave" ploha u kontaktnim zonama

3.2.2.5 Prednapinjanje visokovrijednih vijaka i protokol opterećenja

U slučaju djelovanja dinamičkog opterećenja kao što je djelovanje potresa, uobičajeno je primjenjivati visokovrijedne vijke s prednapinjanjem. Primjena običnih vijaka dovela

bi do neželjenog popuštanja spoja te odvrtanja vijaka. Visokovrijedni vijak ima podložne pločice i ispod glave i ispod matice vijka kako bi se uslijed prednapinjanja vijka spriječilo prodiranje vijka u limove. Izvođenje spoja na ovaj način omogućuje da se opterećenje kroz vijak prenosi trenjem između spojenih ploha a ne posmikom vijka kao u slučaju primjene običnih vijaka, slika 3.17. Vijci u spojevima su pritegnuti na 70% vlačne čvrstoće vijka [56] kako bi se ostvario spoj bez proklizavanja, a vrijednost sile pritezanja $F_{p,C}$ računa se prema sljedećem izrazu:

$$F_{p,C} = 0.7 f_{ub} A_s \tag{3.3}$$

gdje je

fub - vlačna čvrstoća vijka

A_s - površina jezgre vijka

Za vijak M22 ($A_s = 303 mm^2$) i kvalitetu vijka 10.9 ($f_{ub} = 1000 N/mm^2$), vrijednost sile prenapinjanja iznosi 212,10 kN.

Slika 3.17 Spoj limova s visokovrijednim vijcima

Promjer vijka i promjer rupe za vijak modelirani su jednako ($d = d_0 = 22 mm$) radi pojednostavnjenja numeričkog modela. Na temelju kalibracijskog modela priključka utvrđeno je da se uz primjenu ovakvog pojednostavnjenja dobiva dobro podudaranje numeričkih i eksperimentalnih rezultata (točka 3.2.1).

Postupak prednapinjanja vijaka u numeričkim simulacijama priključka prikazan je na dva načina. Prva tehnika prednapinjanja vijaka je standardna "bolt load" tehnika, dok je druga tehnika prednapinjanja s pomoću početnog naprezanja u vijcima pomoću "initial stress" modula [71].

• "Bolt load" tehnika prednapinjanja

Primjenom "bolt load" tehnike vijci se prednapinju u prvom koraku numeričkog proračuna (1.Step, Tablica 3.8), dok je u početnom koraku ("initial step") potrebno definirati rubne uvjete. Prednapinjanje je simulirano presijecanjem tijela vijka na dva jednaka dijela te nanošenjem sile prednapinjanja na dvije međusobno paralelne površine. Formirana je os uzduž vijka po kojoj se vrši prednapinjanje što je prikazano na slici 3.18.

Korak/Step	Procedura
Početni korak	Definiranje rubnih uvjeta
1	Prednapinjanje vijaka/Aktiviranje kontakata

Tablica 3.8 Numerički proračun priključka primjenom "bolt load" tehnike prednapinjanja

Vanjsko djelovanje na priključak

Popravljanje duljine vijaka "fixing the bolt length"

Slika 3.18 Prednapinjanje vijka "bolt load" tehnikom

2

3

Nakon prednapinjanja vijaka provedeno je fiksiranje duljine vijaka ("fixed at current length"). Ovo je potrebno provesti kako bi se izbjegao problem prekomjernog razvlačenja vijaka uslijed vanjskog djelovanja. Također je važno napomenuti da su tijekom prva dva koraka ("initial" i "1. step") spriječeni svi translacijski stupnjevi slobode u plohi prednaprezanja vijaka. Ovi stupnjevi slobode služe kao "umjetni" rubni uvjeti kako bi se spriječila numerička singularnost koja nastaje uslijed tzv. gibanja krutog tijela (engl. rigid body motion). Nakon prednapinjanja i aktiviranja kontakata između elemenata, "umjetni" rubni uvjeti su uklonjeni. Na slici 3.19 prikazano je stanje naprezanja u vijku nakon prednapinjanja.

Slika 3.19 Naprezanje u vijku dobiveno "bolt load" tehnikom prednapinjanja

• Tehnika prednapinjanja primjenom početnog naprezanja ("initial stress")

Za razliku od prethodne metode, ovdje se postupak prednapinjanja provodi u početnom koraku ("initial step", tablica 3.9).

Tablica 3.9 Numerički proračun priključka primjenom poč	očetnog naprezanja ("initial	stress")
---	------------------------------	----------

Korak/Step	Procedura
Početni korak	Definiranje rubnih uvjeta i definiranje početnog naprezanja u tijelu vijka
1	Aktiviranje kontakata pomoću zadavanja sile male vrijednosti
2	Vanjsko djelovanje na priključak

Prednjapinjanje je simulirano primjenom početnog naprezanja u tijelu vijka (bez glave i matice vijka), a definirano je u modulu "load module" kao "predefined field". Vrijednost početnog naprezanja ovisi o konfiguraciji priključka i potrebno ga je precizno kontrolirati. Tako se ove vrijednosti razlikuju ovisno o variranim debljinama čelne ploče, budući da ostali parametri priključka ostaju nepromijenjeni. Za priključke s debljinom čelne ploče od 15 mm vrijednost početnog naprezanja iznosi 970 MPa, za priključke s debljinom čelne ploče od 17 mm iznosi 950 MPa, dok za priključke s čelnom pločom od 20 mm iznosi 940 MPa. Nakon preraspodjele naprezanja između spojenih elemenata, vrijednost naprezanja u tijelu vijka iznosi 519,3 MPa za sve debljine čelnih ploča, što odgovara vrijednosti prednapinjanja u tijelu vijka. Na slici 3.20 prikazano je stanje naprezanja u tijelu vijka za priključke s čelnom pločom od 15 mm.

Kako bi se aktivirali kontakti između spojenih elemenata, naneseno je malo djelovanje na elemente u smjeru prednapinjanja. Vrijednost tog djelovanja iznosi 1 kN i dovoljno je maleno da ne izaziva nikakve učinke na sveukupno ponašanje priključka.

b)

Slika 3.20 Naprezanja u vijcima primjenom "initial stress" tehnike prednapinjanja, a) početno stanje naprezanja pri vrijednosti od 970 MPa, b) stanje naprezanja u vijku nakon aktiviranja kontakata

Obje tehnike prednapinjanja vijaka provjerene su na kalibracijskom modelu priključka te su prikazane u radu Krolo i suradnici, 2016 [71]. Također je dan komentar na dobivene rezultate te prednosti i nedostatci tehnika prednapinjanja te njihov utjecaj na ponašanje numeričkog modela priključka. Metoda prednapinjanja "initial stress" tehnikom izbjegava numeričke nestabilnosti i računski je mnogo efikasnija u odnosu na primjenu "bolt load" tehnike prednapinjanja. Prema tome je za daljnje modeliranje vijaka u priključcima odabrana "initial stress" tehnika prednapinjanja.

3.2.2.6 Rubni uvjeti i plan djelovanja opterećenja

Statički sustav numeričkog modela priključka odabran je prema položaju bočnih pridržanja laboratorijskog modela priključka prema Shi i suradnici [69], slika 3.21. Po uzoru na oblikovanje laboratorijskog uzorka (slika 3.4), razvijen je numerički model koji na krajevima stupova ima postavljene ukrute, kako bi se spriječile deformacije uslijed djelovanja vanjskog opterećenja. U smjeru horizontalnih osi ukruta sa gornje i donje strane stupa spriječeni su horizontalni pomaci dok su u osloncu na dnu stupa spriječeni pomaci u svim smjerovima.

Vanjsko djelovanje simulirano je kontrolom pomaka na kraju grede na kraku od 1100 mm što predstavlja udaljenost od ruba pojasnice stupa. Pri monotonom djelovanju pomak je kontroliran za maksimalnu vrijednost od 130 mm. Cikličko djelovanje simulirano je prema protokolu opterećenja SAC 2000 [28] koje je detaljnije objašnjeno u drugom poglavlju, a vrijednosti vertikalnih pomaka dane su u tablici 3.10 Na krajevima stupova simulirana je vertikalna uzdužna sila od 500 kN.

Korak	Vršna deformacija [rad]	Broj ciklusa n	Vertikalni pomak kraja grede [mm]
1	0,00375	6	3,28
2	0,005	6	4,38
3	0,0075	6	6,56
4	0,01	4	8,75
5	0,015	2	13,13
6	0,02	2	17,5
7	0,03	2	26,25
8	0,04	2	35,0
9	0,05	2	43,75
10	0,06	2	52,5
11	0,07	2	61,25
12	0,08	2	70

Tablica 3.10 Vrijednosti vertikalnih pomaka po
--

Slika 3.21 Statički sustav priključka s prikazanim položajem vanjskog opterećenja i rubnim uvjetima

3.2.2.7 Analiza rezultata numeričkih proračuna priključaka

Kao rezultat numeričkih proračuna priključka određene su krivulje odnosa momenta savijanja *M* i rotacije ϕ koji omogućuje prikaz ponašanja priključka na utjecaj monotonog i cikličkog savijanja, slika 3.22. Ukupna rotacija priključka ϕ jednaka je sumi rotacije pojasnice stupa ϕ_c i rotaciji čelne ploče ϕ_{ep} :

$$\phi = \phi_c + \phi_{ep} \tag{3.4}$$

Rotacija stupa ϕ_c nastaje uslijed posmičnih deformacija koje se javljaju u panelu hrpta stupa i deformacija ostalih komponenata stupa (dio pojasnice uz spoj i ukrute) izračunata je primjenom izraza:

$$\phi_c = \frac{\delta_3 - \delta_2}{z} \tag{3.5}$$

dok je rotacija čelne ploče izračunata primjenom izraza:

$$\phi_{ep} = \frac{\delta_5 - \delta_4}{z} \tag{3.6}$$

gdje su

- δ_2 i δ_3 horizontalni pomaci pojasnica stupa, slika 3.22
- δ_4 i δ_5 horizontalni pomaci čelne ploče uslijed savijanja, slika 3.22
- *z* osni razmak između pojasnica grede

Slika 3.22 Rotacija priključka

Pri simulacijama monotonih djelovanja na priključke zabilježene su vrijednosti momenta savijanja $M_{e,M}$ i rotacije $\phi_{e,M}$ u elastičnom području. Vrijednosti momenta $M_{y,M}$ i rotacije $\phi_{y,M}$ odgovaraju punoj plastifikaciji priključka kada je materijal dosegao granicu popuštanja u elementu po poznatim linijama popuštanja. Puna plastifikacija u svim priključcima ostvarena je u čelnim pločama. Vrijednosti momenta $M_{u,M}$ i rotacije $\phi_{u,M}$ odgovaraju najvećoj čvrstoći priključka kada je materijal dosegao najveću vlačnu čvrstoću. Dobivene vrijednosti dane su u tablici 3.11.

Pri simulacijama cikličkih djelovanja na priključke, elastičnom području odgovaraju vrijednosti momenta savijanja $M_{e.C}$ i rotacija $\phi_{e.C}$. Vrijednosti momenta $M_{y.C}$ i rotacije $\phi_{y.C}$ odgovaraju punoj plastifikaciji priključka. Puna plastifikacija priključaka prikazana je na slikama 3.26, 3.27 i 3.28 te je ostvarena u čelnim pločama kada je materijal dosegao granicu popuštanja u elementu po liniji popuštanja. Nakon dostizanja pune plastifikacije, priključci pri cikličkim djelovanjima pokazuju tendenciju očvršćivanja pri

čemu su izmjerene najveće vrijednosti momenta savijanja $M_{max.C}$ s rotacijama ϕ_C . Nakon toga nastupaju degradacije čvrstoće i krutosti te nastupa lom pri čemu momenti savijanja imaju vrijednosti $M_{fr.C}$ s rotacijama $\phi_{fr.C}$. Vrijednosti su dane u tablici 3.12.

Grupe priključaka	Naziv modela	M _{e.M} [kNm]	φ _{e.M} [rad]	М _{у.М} [kNm]	ф _{у.М} [rad]	M _{u.M} [kNm]	$\phi_{u.M}$ [rad]
	EP1_1_M	227,72	0,009	333,01	0,023	428,55	0,083
1	EP1_2_M	210,2	0,0085	307,63	0,021	401,82	0,078
	EP1_3_M	194,44	0,008	300,19	0,018	394,08	0,071
	EP2_1_M	237,73	0,009	355,29	0,025	449,28	0,085
2	EP2_2_M	220,38	0,0085	340,11	0,023	430,87	0,079
	EP2_3_M	211,88	0,0083	331,05	0,023	415,02	0,075
	EP3_1_M	257,26	0,009	370,67	0,024	474,47	0,084
3	EP3_2_M	237,21	0,0085	359,2	0,023	460,04	0,081
	EP3_3_M	226,5	0,0082	349,68	0,021	451,38	0,081

Tablica 3.11 Numerički rezultati dobiveni simulacijama monotonih djelovanja na priključcima

Tablica 3.12 Numerički rezultati dobiveni simulacijama cikličkih djelovanja na priključcima

Grupe priključaka	Naziv modela	M _{e.C} [kNm]	φ _{e.C} [rad]	M _{y.C} [kNm]	φ _{y.C} [rad]	M _{max.C} [kNm]	φ _c [rad]	M _{fr.C} [kNm]	φ _{fr.C} [rad]
1	EP1_1_C	227,72	0,009	310,98	0,016	392,44	0,047	331,34	0,055
	EP1_2_C	210,2	0,0085	287,99	0,0152	369,52	0,047	306,08	0,055
	EP1_3_C	194,44	0,008	278,89	0,0135	344,26	0,037	344,26	0,055
2	EP2_1_C	237,73	0,009	330,02	0,0152	429,20	0,048	391	0,055
	EP2_2_C	220,38	0,0085	313,88	0,0148	413,03	0,047	364,69	0,062
	EP2_3_C	211,88	0,0083	310,17	0,0143	399,65	0,047	358,16	0,063
3	EP3_1_C	257,26	0,009	354,13	0,0157	461,86	0,046	451,09	0,063
	EP3_2_C	237,21	0,0085	342,88	0,015	433,93	0,039	424,73	0,063
	EP3_3_C	226,5	0,0082	328,33	0,015	437,07	0,046	414,66	0,063

Na slikama 3.23, 3.24 i 3.25 prikazane su usporedbe krivulja odnosa momenata savijanja i rotacija dobiveni pri monotonim i cikličkim savijanjima priključaka. Iz rezultata u tablici 3.11 i 3.12 je vidljivo da se priključci u elastičnom području pri monotonom i cikličkom djelovanju jednako ponašaju te imaju jednaku početnu rotacijsku krutost. Međutim, ulaskom u plastično područje priključci pri cikličkom

djelovanju ostvaruju značajno manje deformacije $\phi_{y.C}$ u odnosu na rotacije priključaka $\phi_{y.M}$ izloženih monotonom djelovanju. Vrijednosti $\phi_{y.C}$ su manje od $\phi_{y.M}$ za $\Delta \phi_y = 33,3\%$ za priključke EP1_3_M/ EP1_3_C dok je najveća razlika dobivena za priključke EP2_1_M/ EP2_1_C i iznosi $\Delta \phi_v = 64,5\%$, tablica 3.13. Također, razlike su vidljive i u vrijednostima momenata između $M_{v,M}$ i $M_{v,C}$ te se kreću u rasponima od $\Delta M_{\nu} = 4,7\%$ za priključke EP3_1_M/ EP3_1_C do $\Delta M_{\nu} = 8,4\%$ za priključke EP2 2 M/ EP2 2 C. Najveće čvrstoće koje priključci mogu ostvariti pri cikličkom djelovanju također su manje od onih koje ostvaruju priključci pri monotonom djelovanju. Razlike se kreću u rasponima od $\Delta M_u = 3,3\%$ za priključke EP3_3_M/ EP3_3_C pa sve do $\Delta M_u = 14,5\%$ za EP1_3_M/ EP1_3_C. Monotono opterećeni priključci mogu ostvariti znatno veće deformacije $\phi_{u,M}$ pri najvećoj čvrstoći priključaka u odnosu na ciklički opterećene priključke ($\phi_{max,C}$) što se vidi iz vrijednosti $\Delta \phi_{\mu}$ u tablici 3.12. Osim toga, uslijed akumulacije deformacija pri cikličkom opterećenju dolazi do degradacije čvrstoće i krutosti nakon čega dolazi do loma u priključcima. U monotono opterećenim priključcima nije izražen ovaj efekt. Na temelju provedenih analiza može se zaključiti da se priključci pri monotonom i cikličkom djelovanju značajno drugačije ponašanju i da je u daljnjim analizama koje će se provoditi neophodno uzeti u obzir sve ove učinke cikličkog ponašanja koji su se zanemarivali. U dijelu 3.3.2 dan je prijedlog modela histerezne anvelope koji uzima u obzir učinke cikličkog ponašanja kojima se ponašanje razlikuje od monotonog ponašanja priključaka.

Grupe priključaka	Naziv modela	∆ M _e [%]	Δ φ _e [%]	∆ M y [%]	Δ φ _y [%]	∆ M _u [%]	∆ φ _u [%]
1	EP1_1_M/ EP1_1_C	-	-	7,1	43,8	9,2	50,9
	EP1_2_M/ EP1_2_C	-	-	6,8	38,2	8,7	41,8
	EP1_3_M/ EP1_3_C	-	-	7,6	33,3	14,5	29,1
	EP2_1_M/ EP2_1_C	-	-	7,7	64,5	4,7	54,5
2	EP2_2_M/ EP2_2_C	-	-	8,4	55,4	4,3	27,4
	EP2_3_M/ EP2_3_C	-	-	6,7	60,8	3,8	19,0
3	EP3_1_M/ EP3_1_C	-	-	4,7	52,9	2,7	33,3
	EP3_2_M/ EP3_2_C	-	-	4,8	53,3	6,0	28,6
	EP3_3_M/ EP3_3_C	-	-	6,5	40,0	3,3	28,6
$\Delta M_y = [(M_{y.M}/M_{y.C}) - 1] * 100 \qquad \Delta \phi_y = [(\phi_{y.M}/\phi_{y.C}) - 1] * 100$							
$\Delta M_u = [(M_{y.u}/M_{max.c}) - 1] * 100 \qquad \Delta \phi_u = [(\phi_{u.M}/\phi_c) - 1] * 100$							

Tablica 3.13 Usporedbe rezultata dobiveni monotonim i cikličkim simulacijama priključaka

Slika 3.23 Krivulje odnosa momenta savijanja i rotacija u priključcima EP1_1, EP1_2 i EP1_3 za monotoni i ciklički odziv

Slika 3.24 Krivulje odnosa momenta savijanja i rotacija u priključcima EP2_1, EP2_2 i EP2_3 za monotoni i ciklički odziv

Slika 3.25 Krivulje odnosa momenta savijanja i rotacija u priključcima EP3_1, EP3_2 i EP3_3 za monotoni i ciklički odziv

Slika 3.26 Pune plastifikacije priključaka EP1_1, EP1_2 i EP1_3 pri cikličkom djelovanju

Slika 3.27 Pune plastifikacije priključaka EP2_1, EP2_2 i EP2_3 pri cikličkom djelovanju

Slika 3.28 Pune plastifikacije priključaka EP3_1, EP3_2 i EP3_3 pri cikličkom djelovanju

3.3 Matematički modeli ponašanja priključaka

Krivulja koja opisuje ponašanje priključaka prikazuje se u obliku odnosa momenta savijanja i rotacije priključka ($M - \phi$). Kako bi $M - \phi$ krivulju ugradili u proračun okvira, odnos momenta i rotacije priključka potrebno je zapisati u obliku matematičkih funkcija. Ponašanje priključaka igra važnu ulogu u analizi ponašanja okvira, stoga je vrlo važna točnost matematičkog modela koji interpretira njegovo ponašanje. Definiranje matematičke formulacije $M - \phi$ krivulje uvelike ovise o razini tražene preciznosti pa su prema tome grupirane u: linearne, bilinearne, trilinearne (multilinearne) i nelinearne [73]. Prvo je dan pregled matematičkih formulacija koje se primjenjuju za opisivanje monotonog i cikličkog ponašanja priključaka. Nakon toga su dani matematički modeli koji su primijenjeni za monotona i ciklička ponašanja priključaka kao i prijedlog novog modela histerezne anvelope koji će se dalje primjenjivati u modeliranju okvira. Parametri za definiranje matematičkih modela dobiveni su iz rezultata numeričkih simulacija priključaka (točka 3.1).

Prvi nelinearni matematički model za opis ponašanja odnosa naprezanja i deformacije predložili su Ramberg i Osgood, 1943. godine [42], koji je kasnije poslužio za opis ponašanja $M - \phi$ krivulje. Ang i Morris, 1984. godine prvi put primjenjuju Ramberg-Osgood formulaciju [42] za opis ponašanja pet tipova priključaka. Za formiranje $M - \phi$ krivulje potrebno je poznavati tri podatka: rotacijsku krutost priključka S, te parametre K i n koji definiraju oblik $M - \phi$ krivulje. Dobivene $M - \phi$ krivulje uspoređene su sa $M - \phi$ krivuljama koje su dobivene laboratorijskim ispitivanjima. Richard i Abbott, 1975. godine [74] predlažu matematički model za predviđanje ponašanja $M - \phi$ krivulje kod djelomično nepopustljivih priključaka za koje je potrebno poznavati četiri podatka: početnu krutost priključka S, krutost priključka prije otkazivanja S_p , referentni moment savijanja M_0 koji predstavlja sjecište tangente S_p s koordinatnom osi M te faktor oblika n koji definira oblik krivulje. Ova dva modela su najzastupljenija u opisivanju ponašanja priključaka na utjecaj monotonog djelovanja. Abolmaali sa suradnicima, 2005. godine [6] primijenili su Ramberg-Osgoodov i Richard-Abbottov model za vijčani priključak s čelnom pločom u visini priključene grede. Dobivene krivulje uspoređene su s $M - \phi$ krivuljama određenim numeričkim simulacijama primjenom metode konačnih elemenata. Drugi način formiranja $M - \phi$ krivulje primjenom regresijskih konstanti također je u primjeni. Najjednostavniji model predložili su Krishnamurthy i suradnici [2] za vijčane priključke s čelnom pločom. Proveli su opsežnu parametarsku studiju primjenom metode konačnih elemenata na ravninskom modelu priključka paralelnom s hrptom grede. Laboratorijska ispitivanja primijenjena su za verifikaciju modela. Znatno točniju formulaciju predlažu Frye i Morris, 1975. godine [75] gdje je funkcija rotacije priključka dana u obliku neparnog polinoma koji je izražen preko momenata savijanja priključka i regresijskih konstanti koji ovise o geometrijskim i mehaničkim svojstvima priključka. Formulacija je razvijena za šest tipova priključaka.

U slučajevima kada nismo u mogućnosti dobiti svojstva ponašanja priključaka laboratorijski ili numerički primjenom konačnih elemenata, mogu se primjenjivati analitičke formulacije. Korištenjem ravnotežnih jednadžbi, jednadžbi kompatibilnosti i materijalnih konstitucijskih zakona može se odrediti rotacijska krutost priključka i otpornost priključka poznajući njegove geometrijske i mehaničke karakteristike. Yee i Melchers, 1986. godine [76] predložili su eksponencijalnu formulaciju $M - \phi$ krivulje za vijčani priključak s produženom čelnom pločom koja je definirana primjenom geometrijskih svojstava priključka. Model uzima u obzir pet oblika deformiranja (izvijanje čelne ploče, izvijanje pojasnice stupa, rastezanje vijaka, posmično deformiranje panela hrpta stupa, tlačno naprezanje u hrptu stupa) i šest oblika otkazivanja (otkazivanje vijaka uslijed vlaka, formiranje plastičnog mehanizma u čeonoj ploči, formiranje plastičnog mehanizma u pojasnici stupa, posmično popuštanje u hrptu stupa, izbočavanje pojasnice stupa, popuštanje hrpta stupa). Wu i Chen, 1990. godine [77] predlažu logaritamsku formulaciju za vijčane priključke s kutnim profilima koja je definirana iz njegovih geometrijskih i mehaničkih karakteristika.

U slučaju kada je potrebno analizirati okvirne konstrukcije na dinamičke utjecaje kao što je djelovanje potresa potrebno je primjenjivati ciklički model ponašanja priključka koji će se ugraditi u model okvira. Unatoč učinkovitosti matematičkih modela određenih na temelju monotonog odziva djelomično nepopustljivih priključaka, oni ne mogu obuhvatiti svojstva priključka u području rasterećenja i ponovnog opterećenja priključka.

Popov i Pinkey, 1968. godine prvi primjenjuju Ramberg-Osgoodovu formulaciju za modeliranje histerezne petlje priključka bez proklizavanja koji je kasnije primijenjen za model simetrične histerezne petlje priključka u kojem su pojasnice grede izravno

zavarene za slučaj sa i bez čelne ploče [78]. Mazzolani, 1988. godine razvio je opsežan model temeljen na Ramberg-Osgoodovoj formulaciji za simuliranje uštipnuća histerezne petlje (engl. pinching) [79]. "Pinching" učinak je pojava koja se javlja pri cikličkom opterećenju koju karakterizira smanjenje krutosti tijekom ponovnog opterećenja nakon rasterećenja, a manifestira se kao proklizavanje između čelne ploče i pojasnice stupa kod priključka stupa i grede. Simões sa suradnicima, 2001. godine [79] modificira Mazzolanijev model koji uzima u obzir "pinching" učinak u području rasterećenja. Istaknuto je da su modeli temeljeni na Ramberg-Osgoodovoj formulaciji manjkavi u izražavanju deformacije kao funkcije naprezanja što jasno otežava njihovu ugradnju u metodu konačnih elemenata temeljenu na kontroli pomaka [78].

De Martino sa suradnicima, 1984. godine prvi puta primjenjuju Richard-Abbottovu formulaciju za opis cikličkog ponašanja priključaka [78]. Model u područjima rasterećenja i ponovnog opterećenja uzima krutosti kao u prvoj zoni opterećenja. Takav model može se primijeniti za simetrične presjeke s konstantnim pozitivnim i negativnim opterećenjem. Međutim, kada su priključci asimetrični, intenzitet opterećenja se mijenja ili dolazi do degradacije mehaničkih svojstava priključka, ovaj matematički model ne može opisati realno ponašanje kod takvih priključaka. Della Corte i suradnici, 2000. godine predlažu novi model, također temeljen na Richard-Abbottovoj formulaciji, u kojem su uzeli u obzir "pinching" učinak, kao i opadanje čvrstoće i krutosti te utjecaj očvršćivanja materijala. Modificirani Richard-Abbottov model također su razvili i Nogueiro sa suradnicima, 2003. godine [78] za vijčani priključak s čelnom pločom koji uzima u obzir "pinching" učinak. "Pinching" učinak opisan je pomoću dvije granične krivulje koje predstavljaju gornju i donju granicu mogućih vrijednosti $M - \phi$ krivulje. Obje krivulje definirane su prema standardnoj Richard-Abbottovoj formulaciji, dok se između njih formira modificirana Richard-Abbottova krivulja koja uključuje dodatni parametar koji definira prijelazno pravilo između gornje i donje krivulje.

3.3.1 Matematički model za opis monotonog ponašanja priključaka

Za definiranje monotonog ponašanja priključaka primijenjen je trilinearni matematički model prema autorima Wang i suradnici, 2013. godine [80]. Matematički model se sastoji od tri linearna segmenta, a prikazani su na slici 3.29.

Segment 0-A_M: elastično ponašanje priključka sa početnom rotacijskom krutosti $K_{e,M}$ koja je jednaka:

$$K_{e.M} = \frac{M_{e.M}}{\phi_{e.M}} \tag{3.7}$$

gdje je

M_{e.M} - elastični kapacitet priključka

 $\phi_{e,M}$ - rotacija priključka koja odgovara momentu $M_{e,M}$

Segment A_M-B_M: područje popuštanja priključka koje je zbog jednostavnosti zamijenjeno linearnim segmentom te je rotacijska krutost $\alpha K_{e,M}$ jednaka:

$$\alpha K_{e.M} = \frac{M_{\mathcal{Y}.M} - M_{e.M}}{\phi_{\mathcal{Y}.M} - \phi_{e.M}} \tag{3.8}$$

gdje je

 $M_{y.M}$ - moment savijanja u priključku koji se javlja pri punoj plastifikaciji priključka

 $\phi_{y,M}$ - rotacija priključka koja odgovara momentu $M_{y,M}$

Segment B_M-C_M: područje očvršćivanja priključka gdje je rotacijska krutost $\beta K_{e,M}$ jednaka:

$$\beta K_{e.M} = \frac{M_{u.M} - M_{y.M}}{\phi_{u.M} - \phi_{y.M}}$$
(3.9)

gdje je

 $M_{u,{\cal M}}\,$ - moment savijanja u priključka koji se javlja pri dosezanju najvećeg momenta savijanja

 $\phi_{u.M}$ - rotacija priključka koja odgovara momentu $M_{fr.M}$

Kriteriji za određivanje momenata savijanja i rotacija priključaka u pojedinom segmentu trilinearnom modela objašnjeni su u dijelu 3.2.8 te su vrijednosti dane u tablici 3.11. Primjenom izraza (3.7), (3.8) i (3.9) dobivene su vrijednosti koje su dane u tablici 3.14.

Za definiranje početne rotacijske krutosti $K_{e,M}$ i parametara α i β primijenjene su vrijednosti momenata i rotacija dobivene numerički koje su dane u tablici 3.16.

Slika 3.29 Trilinearni matematički model monotonog ponašanja priključka [80]

Tablica 3 11	Vrijednosti	narametara	trilinearnoa	matematičkog	modela
Tablica 5.14	viijeunosu	parametara	unnearnog	тасетанскоу	moueia

Grupe priključaka	Naziv modela	K _{e.M} [kN/m]	α	β
1	EP1_1_M_Trilinearni model	25302,2	0,297	0,063
	EP1_2_M_Trilinearni model	24729,4	0,315	0,067
	EP1_3_M_Trilinearni model	24305,0	0,435	0,073
2	EP2_1_M_Trilinearni model	26414,4	0,278	0,059
	EP2_2_M_Trilinearni model	25927,1	0,318	0,063
	EP2_3_M_Trilinearni model	25527,7	0,318	0,063
3	EP3_1_M_Trilinearni model	28584,4	0,265	0,061
	EP3_2_M_Trilinearni model	27907,1	0,301	0,062
	EP3_3_M_Trilinearni model	27622,0	0,348	0,061
3.3.2 Matematički modeli za opis cikličkog ponašanja priključka

Za potrebu nelinearnih statičkih proračuna okvira koji uzimaju u obzir stvarna ciklička svojstva priključaka, dobivene cikličke histerezne krivulje potrebno je zapisati matematički. U dijelu 3.3.2.1. predložen je model histerezne anvelope koji uzima u obzir degradacije čvrstoće koji se javljaju pri cikličkom ponašanju. Za nelinearne dinamičke proračune okvira primijenjen je modificirani Richarad-Abbottov model koji je detaljno objašnjen u 3.3.2.2 dok je kalibracija parametara istog matematičkog modela za daljnju primjenu u nelinearnom dinamičkom proračunu prikazana u 3.3.2.3.

3.3.2.1 Matematički model histerezne anvelope

Na temelju provedenih analiza u dijelu 3.2.8 pojavila se ideja o razvoju modela histerezne anvelope priključka koji će se moći primjenjivati u nelinearnim statičkim proračunima, a da pri tome uzme u obzir učinke cikličkog ponašanja kao što su smanjenje deformacija i momenata pri punoj plastifikaciji priključka, degradacije čvrstoće te deformacije koje priključak može ostvariti neposredno prije nastupanja loma. Dosadašnji način provođenja nelinearnog statičkog proračuna konstrukcija koji uzima u obzir monotona svojstva priključaka može se smatrati prilično konzervativnim. Razvojem ovog modela omogućili bi bolje predviđanje ponašanja konstrukcija u potresu te bi se približili ponašanju nelinearnog dinamičkog proračuna koji je ujedno i verifikacija ovog modela. Krajnjem korisniku koji ne poznaje ciklička svojstva priključaka dat će se vrijednosti parametara kojima će se poznate vrijednosti dobivene monotonim ponašanjem moći korigirati i kao takve primjenjivati u daljnjim analizama.

Budući da su dobivene histerezne krivulje gotovo simetrične, za razvoj modela histerezne anvelope odabrani su gornji desni kvadranti histereznih krivulja. Kroz vrhove histereznih petlji povučena je anvelopa u obliku četiri linije, slika 3.30. Prva linija $(0 - A_c)$ odgovara elastičnom ponašanju priključaka, druga linija $(A_c - B_c)$ odgovara području pune plastifikacije priključka, treća linija $(B_c - C_c)$ obuhvaća područje očvršćivanja, dok četvrta linija $(C_c - D_c)$ obuhvaća područje degradacije čvrstoće nakon čega nastupa lom u priključku. Kako je ideja dati korekcijske faktore za poboljšanje monotonog trilinearnog modela priključaka, histrerezna anvelopa $(0 - A_c - B_c - C_c - D_c)$ također je svedena na trilinerni model $(0 - A_c - B_c' - D_c')$. Elastično područje pri monotonom i cikličkom djelovanju se ne mijenja, što znači da se granični moment savijanja i rotacija u elastičnom području može usvojiti iz monotonog ponašanja priključaka ($M_{e.c} = M_{e.M}$, $\phi_{e.c} = \phi_{e.M}$). Za položaj točke B_c odabrana je vrijednost momenta savijanja pri punoj plastifikaciji priključka ($M_{y.c} = M_{y.M}$), dok vrijednost deformacije odgovara deformaciji priključka pri punoj plastifikaciji pri cikličkom savijanju $\phi_{y.c}$. Položaj točke D_c ima vrijednost deformacije koja odgovara lomu priključka $\phi_{fr.c}$, dok se vrijednost momenta savijanja $M_{fr.c}$ dobije na način da energija deformiranja ispod novog modela histerezne anvelope ($0 - A_c - B_c - D_c$) odgovara energiji deformiranja ispod histerezne anvelope ($0 - A_c - B_c - C_c - D_c$). Primjena modela histerezne anvelope pokazana je na ukupno devet priključaka te su dani na slikama 3.31, 3.32 i 3.33. Vrijednosti momenata savijanja i rotacija za definiranje pojedinog segmenta modela histerezne anvelope dani su u tablici 3.17. a određeni su direktno iz vrijednosti histereznih krivulja koje su dobivene numeričkim simulacijama priključaka.

Slika 3.30 Prijedlog modela histerezne anvelope

Na temelju omjera između $\phi_{y,H}/\phi_{y,M}$, $\phi_{fr,H}/\phi_{u,M}$ i $M_{fr,H}/M_{u,M}$ definirane su regresijske funkcije koje omogućuju da se pomoću monotonih svojstava priključaka, koja se mogu odrediti nekom od poznatih metoda kao što je metoda komponenata, mogu odrediti ciklička svojstva priključka. Za definiranje funkcionalne zavisnosti između navedenih omjera odabrana je višestruka nelinearna regresija te je primijenjen nelinearni eksponencijalni regresijski model. Omjeri rotacija i momenata savijanja novog modela histerezne anvelope i monotonog modela definirani su u funkciji

nezavisnih varijabli t i p, izraz (3.10), što su debljina čelne ploče i vertikalni razmaci između redova vijaka na čelnoj ploči.

$$\frac{\phi_{y.H}}{\phi_{y.M}} = f(t,p) \qquad \frac{M_{fr.H}}{M_{u.M}} = f(t,p) \qquad \frac{\phi_{fr.H}}{\phi_{u.M}} = f(t,p)$$
(3.10)

Za definiranje modela histerezne anvelope definirani su sljedeći izrazi:

$$(0 - A_{c}) \qquad \begin{cases} M_{e.H} = M_{e.M} \\ \phi_{e.H} = \phi_{e.M} \end{cases} \quad \phi \leq \phi_{e.H}$$

$$(A_{c} - B_{c}') \qquad \begin{cases} M_{y.H} = M_{y.M} \\ \phi_{y.H} = \phi_{y.M}(0,2341t^{-0,208}p^{0,3293}) \end{cases} \quad \phi_{e.H} < \phi < \phi_{y.H} \qquad (3.11)$$

$$(B_{c}' - D_{c}') \qquad \begin{cases} M_{fr.H} = M_{u.H}(0,5024t^{0,4429}p^{-0,131}) \\ \phi_{fr.H} = \phi_{u.M}(0,0059t^{0,3086}p^{0,8002}) \end{cases} \quad \phi_{y.H} < \phi < \phi_{fr.H} \end{cases}$$

Grupe priključaka	Naziv modela	K _{e.H} [kN/m]	М _{у.Н} [kNm]	$\phi_{y.H}$ [rad]	M _{fr.H} [kNm]	φ _{fr.H} [rad]
	EP1_1_C_Model histerezne anvelope	25302,2	333,01	0,016	370,9	0,055
1	EP1_2_C_Model histerezne anvelope	24729,4	307,63	0,0152	351,5	0,055
	EP1_3_C_Model histerezne anvelope	24305,0	300,19	0,0135	335,8	0,055
2	EP2_1_C_ Model histerezne anvelope	26414,4	355,29	0,0152	411,0	0,055
	EP2_2_C_Model histerezne anvelope	25927,1	340,11	0,0148	407,11	0,0615
	EP2_3_C_Model histerezne anvelope	25527,7	336,05	0,0143	392	0,063
3	EP3_1_C_Model histerezne anvelope	28584,4	370,67	0,0157	477,9	0,063
	EP3_2_C_ Model histerezne anvelope	27907,1	359,2	0,015	456,1	0,063
	EP3_3_C_ Model histerezne anvelope	27622,0	349,68	0,015	443,5	0,063

Analiza valjanosti predloženog modela histerezne anvelope provedena je za tri priključka EP1_3, EP2_3 i EP3_3, a detalji su dani u poglavlju 4.

Slika 3.31 Razvoj modela histerezne anvelope za priključke EP1_1, EP1_2 i EP1_3

Slika 3.32 Razvoj modela histerezne anvelope za priključke EP2_1, EP2_2 i EP2_3

Slika 3.33 Razvoj modela histerezne anvelope za priključke EP3_1, EP3_2 i EP3_3

3.3.2.2 Modificirani Richard-Abbottov model

Richard i Abbott su 1975. godine [74] predložili matematičku formulaciju za predviđanje ponašanja $M - \phi$ krivulje kod djelomično nepopustljivih priključaka. Formulacija je namijenjena za simulacije monotonog ponašanja priključaka. Prema tom modelu, $M - \phi$ krivulja opisana je sljedećom funkcijom:

$$M = \frac{(k-k_p)\phi}{\left\{1 + \left[\frac{(k-k_p)\phi}{M_0}\right]^n\right\}^{1/n}} + k_p\phi$$
(3.12)

Izraz (3.12) definiran je četirima parametrima: početna krutost priključka k koja određuje početni nagib $M - \phi$ krivulje, krutost priključka prije otkazivanja k_p koji se dobije iz zadnja dva izmjerena podatka (ϕ_1, M_1), kao $k_p = \frac{M_1 - M_0}{\phi_1}$ (slika 3.34), referentni moment M_0 koji predstavlja sjecište tangente k_p s koordinatnom osi M te faktor n koji utječe na oblik krivulje.

Slika 3.34 Richard-Abbottov model

Faktor oblika *n* može se odrediti primjenom sljedećeg izraza:

$$n = \frac{-ln}{ln(\frac{M_1}{M_0} - \frac{k_p}{k - k_p})}$$
(3.13)

Za opisivanje cikličkog ponašanja priključaka razvijene su razne modifikacije osnovnog Richard-Abbottovog modela. Della Corte i suradnici, 2000. godine [81] prvi su razvili modifikaciju metode koja uzima u obzir "pinching" učinak u ponašanju priključaka. Prema njihovom modelu Nogueiro i suradnici, 2003 [82] razvili su svoj model. Za prvi dio $M - \phi$ krivulje koji opisuje opterećenje priključka od nule do pojave očvršćivanja (ϕ_p, M_p) vrijedi formulacija (3.12). Formulacija koja opisuje područje rasterećenja i počinje u točki (ϕ_p, M_p) ima oblik, slika 3.35 :

Slika 3.35 Modificirani Richard-Abbottov model za opis cikličkog ponašanja priključka za simetrične presjeke bez smanjenja krutosti [83]

Grana krivulje koja opisuje ponovno opterećenje a nastupa u točki (ϕ_n , M_n) dobije se prema istom izrazu (3.14), ali se umjesto točke (ϕ_p , M_p) uvrsti (ϕ_n , M_n).

$$M = M_n - \frac{(k - k_p)(\phi_n - \phi)}{\left\{1 + \left[\frac{(k - k_p)(\phi_n - \phi)}{2M_0}\right]^n\right\}^{1/n}} - k_p(\phi_n - \phi)$$
(3.15)

Ovaj model dobro opisuje ponašanje priključaka koji su simetrični oko horizontalne osi, kod kojih nema degradacije krutosti. Kod priključaka koji su asimetrični kao što je priključak s jednostrano produženom čelnom pločom, ovaj model ne opisuje dobro ponašanje. Također, model neće moći vjerodostojno opisati ponašanje priključka kada dolazi do promjene intenziteta momenata u području opterećenja i rasterećenja te kod priključaka kod kojih je izražena degradacija mehaničkih karakteristika priključka. U takvim slučajevima primjenjuje se drugačiji model koji je prikazan na slici 3.36.

Slika 3.36 Modificirani Richard-Abbottov model za simetrične priključke sa različitim vrijednostima pozitivnog i negativnog momenta te za asimetrične presjeke

Prva grana histerezne petlje koja ide iz ishodišta do (ϕ_p, M_p) gdje nastupa pozitivno opterećenje ima oblik prema (3.12). Zatim u točki (ϕ_p, M_p) nastupa rasterećenje te formulacija ima oblik:

$$M = M_p - \frac{(k_n - k_{pn})(\phi_p - \phi)}{\left\{1 + \left[\frac{(k_n - k_{pn})(\phi_p - \phi)}{M_n}\right]^n\right\}^{1/n}} - k_{pn}(\phi_p - \phi)$$
(3.16)

gdje je

 $M_n = M_p + M_{0n}$

Vrijednosti k_n , k_{pn} i M_{0n} prikazane su na slici 3.36. Krutosti u sljedećoj grani se mijenjaju te nastupa ponovno opterećenje iz točke (ϕ_n , M_n) do (ϕ_a , M_a):

$$M = M_n - \frac{(k_a - k_{pa})(\phi_n - \phi)}{\left\{1 + \left[\frac{(k_a - k_{pa})(\phi_n - \phi)}{M_a}\right]^n\right\}^{1/n}} - k_{pa}(\phi_n - \phi)$$
(3.17)

gdje je

 $M_a = M_n + M_{0a}$

Vrijednosti k_a , k_{pa} i M_{0a} prikazani su na slici 3.36. Sljedeće rasterećenje nastupa u točki (ϕ_a , M_a) te formulacija ima oblik:

$$M = M_a - \frac{(k_d - k_{pd})(\phi_a - \phi)}{\left\{1 + \left[\frac{(k_d - k_{pd})(\phi_a - \phi)}{M_d}\right]^n\right\}^{1/n}} - k_{pa}(\phi_a - \phi)$$
(3.18)

gdje je

 $M_d = M_a + M_{0d}$

Vrijednosti k_d , k_{pd} i M_{0d} prikazani su na slici 3.36. Općenito, kada je priključak izložen uzastopnim ciklusima opterećenja ili rasterećenja, parametri k, k_p , M_0 i n ne ostaju konstantni. Posebno krutost k i moment M_0 imaju tendenciju smanjenja, što nastaje zbog degradacije mehaničkih svojstava priključka. Model uštipnuća histerezne krivulje ("pinching" učinak) razvili su Della Corte i suradnici, 2000. godine [81], slika 3.37.

Slika 3.37 Grana histerezne krivulje s "pinching" učinkom

"Pinching" učinak na grani histerezne krivulje opisuje se s pomoću dvije granične krivulje koje su prikazane na slici 3.37 i predstavljaju mogući položaj $M - \phi$ krivulje. Za gornju i donju graničnu krivulju također vrijedi Richard-Abbottovo pravilo. Gornja granična krivulja definirana je parametrima k_0 , M_0 , k_h i n, a donja granična krivulja definirana je parametrima k_{0p} , M_{0p} , k_{hp} i n_p . Bilo koja točka na stvarnoj $M - \phi$ krivulji definirana je sljedećim parametrima:

$$k_{0t} = k_{0p} + (k_0 - k_{0p}) t$$
$$M_{0t} = M_{0p} + (M_0 - M_{0p}) t$$
$$k_{ht} = k_{hp} + (k_h - k_{hp}) t$$
$$n_t = n_p + (n - n_p) t$$

gdje je parametar t u intervalu [0,1], definira prijelazno pravilo između gornje i donje granične krivulje. Vrijednost parametra t dobije se:

$$t = \left[\frac{(\phi/\phi_{lim})^{t_1}}{(\phi/\phi_{lim})^{t_1+1}}\right]^{t_2}$$
(3.19)

gdje su

 t_1 , t_2 i ϕ_{lim} tri kalibracijska parametra koja se dobiju usporedbom kalibracijske krivulje s rezultatima dobivenim numeričkim simulacijama priključaka. Parametar ϕ_{lim} opisuje najveću očekivanu deformaciju u smjeru djelovanja deformiranja:

$$\phi_{lim} = C(|\phi_0| + \phi_{max})$$
(3.20)

gdje je

C - kalibracijski parametar (slika 3.38)

 $|\phi_0|$ - apsolutna vrijednost deformacije koja se odnosi na početnu točku trenutnog ciklusa

 ϕ_{max} - najveća vrijednost deformacije koja se dogodila u prethodnom ciklusu (slika 3.38)

Odnos momenta savijanja i rotacije za ponašanje priključaka sa "pinchning" učinkom može se dobiti sljedećim izrazim:

$$M = M_a - \frac{(k_{0t} + k_{ht})\phi}{\left\{1 + \left[\frac{(k_{0t} + k_{ht})\phi}{M_{0t}}\right]^{n_t}\right\}^{1/n_t}} - k_{ht}\phi$$
(3.21)

Slika 3.38 Utjecaj parametra C na oblik histerezne krivulje

3.3.2.3 Kalibracija parametara modificiranog Richard-Abbottovog modela za ciklički odziv priključaka

Ciklička svojstva priključaka primjenom modificiranog Richard-Abbottovog matematičkog modela definirana su primjenom numeričkog programa SeismoStruct [32]. Priključak je modeliran na način koji je prikazan na slici 3.39, a sastoji se od dviju točaka istih koordinata koje su spojene veznim ("Link") elementom.

Link (Modificirani Richard-Abbottov model)

Slika 3.39 Model veznog elementa (linka) za definiranje parametara modificiranog Richard-Abbottovog modela

Veznom elementu su dodijeljena svojstva modificiranog Richard-Abbottovog matematičkog modela za što je određeno ukupno 30 parametara koji opisuju cikličko svojstvo priključaka. 15 parametara definira uzlazne grane histerezne krivulje, dok preostalih 15 parametara definira silazne grane histerezne krivulje. Kako je histerezna krivulja simetrična, tako su uzlazne i silazne grane simetrične. Stoga je potrebno precizno definirati 15 parametara za uzlazne grane, a preostalih 15 za silazne grane će biti jednaki. Ciklička djelovanja koja djeluju u točki 2 definirana su kao rotacije u vremenu koje su dobivene numeričkim simulacijama priključaka u programu ABAQUS [29]. Za definiranje svakog pojedinog parametra dane su referentne vrijednosti koje su Kalibracijski prikazane u tablici 3.16. parametri dobiveni za priključke EP1 3 Richard Abbott, EP2 3 Richard Abbott i EP3 3 Richard Abbott dani su u tablici 3.16. Točnost i verifikacija dobivenih vrijednosti parametara napravljena je usporedbom histereznih krivulja određenih u SeismoStructu [32] s histereznim krivuljama dobivenim numeričkim simulacijama u ABAQUSU [29], a prikazane su na slici 3.40. Crvene krivulje predstavljaju histerezne petlje dobivene primjenom Richard-Abbottovog matematičkog modela, dok crne krivulje predstavljaju histereze dobivene numeričkim simulacijama. Vrijednosti najvećih momenata savijanja (u vlaku) dobivene primjenom Richard-Abbottovog modela razlikuju se od vrijednosti dobivenih numeričkim simulacijama za 3,45% za priključak EP1 3, 4,27% za priključak EP2 3

108

te 0,7% za priključak EP3_3. Najveća razlika došla je za priključak EP2_3 zbog toga što je Richard-Abbottovim modelom priključka opisana postupna degradacija čvrstoće, dok je numeričkim simulacijama dobivena nagla degradacija čvrstoće u predzadnjem ciklusu. Degradacije krutosti za sva tri priključka pokazuju zadovoljavajuće podudaranje, dok su u području uštipnuća (pinchinga) histereznih petlji vidljiva mala odstupanja. Primjenom Richard-Abbottovog modela priključka postignuto je zadovoljavajuće ponašanje pri cikličkom djelovanju budući da je modelom obuhvaćena degradacija čvrstoće, degradacija te učinci uštipnuća histereznih petlji.

		Vrijednosti parametara			
Značenje parametara	Oznaka	Referentne vrijednosti	EP1_3_ Richard_Abbott	EP2_3_ Richard_Abbott	EP3_3_ Richard_Abbott
Početna krutost gornje grane uzlaznu (silaznu) cikličke krivulje	$K_a(K_d)$	K _{e.C}	24305	25527,7	27621,9
Čvrstoća gornje grane uzlaznu (silaznu) cikličke krivulje	$M_a(M_d)$	1,3 — 1,56 <i>M_{y.C}</i>	362,58	398,14	453,83
Krutost pri popuštanju gornje grane uzlaznu (silaznu) cikličke krivulje	$K_{pa}\left(K_{pd}\right)$	0,02 - 0,05 M _{y.c}	228,93	366,65	603,45
Faktor oblika gornje grane uzlaznu (silaznu) cikličke krivulje	$n_a(n_d)$	2	2	2	2
Početna krutost donje grane uzlaznu (silaznu) cikličke krivulje	$K_{ap}\left(K_{dp}\right)$	K _{e.C}	24305	25527,7	27621,9
Čvrstoća donje grane uzlaznu (silaznu) cikličke krivulje	$M_{ap}\left(M_{dp}\right)$	0,45 – 0,65 <i>M_a</i> (<i>M</i> _d)	235,68	258,79	294,99
Krutost pri popuštanju donje grane uzlaznu (silaznu) cikličke krivulje	$K_{pap}\left(K_{pdp} ight)$	0,03 K _{y.C}	228,93	366,65	603,45
Faktor oblika donje grane uzlaznu (silaznu) cikličke krivulje	$n_{ap}\left(n_{dp} ight)$	1	1	1	1
Empirijski koeficijent koji definira pinching	$t_{1a}(t_{1d})$	5-20	15	10	8
Empirijski koeficijent koji definira pinching	$t_{2a}(t_{2d})$	0,15-0,5	0,25	0,25	0,25
Empirijski koeficijent koji definira pinching	$C_a(C_d)$	1	1	1	1
Empirijski koeficijent koji definira stupanj pada krutosti	$i_{Ka}\left(i_{Kd}\right)$	1-25	2	1	1
Empirijski koeficijent koji definira stupanj pada čvrstoće	i _{Ma} (i _{Md})	0,005-0,1	0,005	0,005	0,005
Empirijski koeficijent koji definira razinu izotropnog očvršćivanja	$H_a\left(H_d\right)$	0,01-0,04	0,02	0,02	0,02
Najviša vrijednost pomaka (deformiranja) dosegnuta u protokolu	E _{maxa} (E _{maxd})	$\phi_{fr.C}$	0,055	0,065	0,063
Indeks a-ascending (uzlazna grana)	d-descending (si	ilazna grana) his	sterezne petlie.		

Tablica 3.16 Parametri priključaka za modificirani Richard-Abbottov model

 $K_{e.C} = M_{e.C}/\phi_{e.C}; K_{y.C} = (M_{y.C} - M_{e.C})/(\phi_{y.C} - \phi_{e.C}); \text{Vrijednosti } M_{e.C}, M_{y.C}, \phi_{y.C}, \phi_{e.C} \text{ i } \phi_{fr.C} \text{ su dane u tablici 3.12.}$

Slika 3.40 Usporedba histereznih krivulja dobivenih numeričkim simulacijama s histereznim krivuljama dobivenim modificiranim Richard-Abbottovim modelom

4 ANALIZA UTJECAJA PONAŠANJA VIJČANIH PRIKLJUČAKA NA POTRESNI ODZIV ČELIČNIH OKVIRA

Određivanje učinaka potresnog djelovanja na konstrukciju ovisi o definiranju svojstava modela konstrukcije. Europske norme [59] propisuju četiri metode od kojih su dvije linearne a dvije nelinearne metode, tablica 4.1. Metoda proračuna s bočnim silama je linearna statička metoda koja je primjenjiva na konstrukcije koje vibriraju dominantno u prvom tonu te ne postoji značajan doprinos viših oblika, te na pravilne konstrukcije koje zadovoljavaju kriterije pravilnosti tlocrta i po visini. Potresno djelovanje definirano je proračunskim spektrom odziva što predstavlja elastični spektar odziva koji je reduciran faktorom ponašanja q. Faktor ponašanja q predstavlja sposobnost konstrukcije da apsorbira i troši energiju unesenu u konstrukciju u potresu.

-	-	
Proračun konstrukcije	STATIČKI	DINAMIČKI
LINEARNI	Metoda proračuna primjenom bočnih sila	Modalni proračun primjenom spektra odziva
NELINEARNI	Metoda postupnog guranja (engl. pushover)	Primjena vremenskih zapisa potresa

Tablica 4.1 Potresni	proračun konstrukcija
----------------------	-----------------------

To se trošenje energije ostvaruje nelinearnim ponašanjem konstrukcije, odnosno njenim oštećenjem. Faktor ponašanja omogućuje da se izbjegnu složeni nelinearni proračuni te se pomoću njega korigiraju rezultati dobiveni linearnim elastičnim proračunom pri čemu je odziv konstrukcije u konačnici nelinearan. Vrijednosti faktora ponašanja *q* definirane su u ovisnosti o vrsti materijala i tipu konstrukcije. Modalni proračun primjenom spektra odziva je linearna dinamička metoda koja se primjenjuje bez ograničenja na sve konstrukcije kod kojih postoji utjecaj viših oblika vibracija na

(engl. time history)

odziv konstrukcije. Odziv sustava s više stupnjeva slobode definira se superpozicijom modalnih odziva dobivenih spektralnim proračunom sustava s jednim stupnjem slobode.

Dugi niz godina provode se znanstvena istraživanja koja uvode novi pristup proračuna konstrukcija na potresno djelovanje, a temelje se na konceptu ponašanja konstrukcije (engl. performance based concept). Prepoznata je činjenica da se pri projektiranju konstrukcija velika pozornost posvećuje kontroli oštećenja. To se može postići uvođenjem nelinearnosti u metodologiju potresnog proračuna. Danas postoji više takvih metoda koje se različito nazivaju, a njihov pregled se može naći u [84, 85, 86]. One su uvedene u sve suvremene svjetske propise kojima se regulira proračun konstrukcija na djelovanje sila od potresa, kao što je Fema 440 [87] i EN 1998-1-1 [59]. U europskoj normi [59] uvedena je nelinearna statička metoda N2, a nastala je kao rezultat dugogodišnjeg rada grupe znanstvenika iz Slovenije [88, 89, 31]. Osnovna formulacija ove metode N2 se razvijala i dopunjavala te se na taj način proširivala njena primjena. Od početne ideje u kojoj je bilo moguće primjenjivati metodu samo na pravilne sustave, kod kojih ne postoji bitan utjecaj viših oblika vibracija, nelinearna statička metoda proširena je na način da se najprije njezina primjena prenijela i na nepravilne konstrukcije kod kojih treba uzeti u obzir utjecaj viših oblika vibracija [90], kao i na sustave kod kojih je izražen utjecaj torzije [91]. Temeljna značajka svih ovih proširenja nelinearne statičke metode N2 jest u tome što je i dalje uporaba te metode ostala relativno jednostavna, pa se u puno slučajeva više isplati koristiti ovako proširenu metodu N2 u odnosu na primjenu nelinearnog dinamičkog proračuna u vremenu (engl. time history).

Nelinearni dinamički proračun primjenom realnih zapisa potresa je najtočnija ali i najzahtjevnija metoda. Kako nema ograničenja, ovdje je primijenjena za verifikaciju rezultata koji su dobiveni nelinearnim statičkim proračunom te je detaljno prikazan u dijelu 4.2 ovog poglavlja.

4.1 Potresni proračun okvira primjenom nelinearne statičke metode (Metoda N2)

4.1.1 Opis metode

Nelinearna statička metoda N2 kombinira metodu postupnog guranja (engl. pushover) modela konstrukcije s više stupnjeva slobode sa spektralnom analizom ekvivalentnog sustava s jednim stupnjem slobode. Metoda uspoređuje kapacitet konstrukcije (engl. capacity) i potresni zahtjev (engl. demand). Potresni zahtjev predstavlja djelovanja na konstrukciju, a izražen je spektrom određenog potresa, dok je kapacitet konstrukcije otpornost konstrukcije koji se dobije metodom postupnog guranja. Postupak je prikazan kroz osam koraka kako je to izvorno dao Fajfar u radu [31].

1. PODATCI O KONSTRUKCIJI I POTRESNOM OPTEREĆENJU

Analizirani su ravninski modeli čeličnih okvira s više stupnjeva slobode za koje su dani detalji u poglavlju 4.1.4. Modeli okvira obuhvaćaju nelinearna svojstva priključaka u obliku odnosa momenta i rotacije. Prvo je proveden proračun okvira za slučaj monotonog odziva priključaka u obliku trilinearne krivulje momenta i rotacije, dok se drugim proračunom okvira uzimaju u obzir histerezna svojstva priključaka primjenom modela histerezne anvelope koje su prikazane u poglavlju 3.3.

Potresno djelovanje (potresni zahtjev) definira se u obliku elastičnog spektra ubrzanja koji je detaljno objašnjen u poglavlju 4.1.4.

2. POTRESNO DJELOVANJE U "AD" FORMATU

Zahtijevani potresni spektar odziva definira se u "AD formatu" (*Acceleration-Displacement format*). Za elastični sustav s jednim stupnjem slobode primjenjuje se sljedeća relacija:

$$S_{de} = \frac{T^2}{4\pi^2} S_{ae} \tag{4.1}$$

gdje su S_{ae} i S_{de} vrijednosti ubrzanja i pomaka elastičnog spektra za period *T* i stupanj prigušenja ξ . Za nelinearni sustav s jednim stupnjem slobode s bilinearnim odnosom sila-pomak, neelastični spektar ubrzanja S_a i neelastični spektar pomaka S_d određuju se na sljedeći način:

$$S_a = \frac{1}{R_{\mu}} S_{ae} \quad S_d = \frac{\mu}{R_{\mu}} S_{de}$$
 (4.2)

gdje je

 μ - faktor duktilnosti, omjer između najvećeg pomaka i pomaka na granici popuštanja konstrukcijskog sustava

 R_{μ} - faktor redukcije zbog duktilnosti odnosno zbog histereznog trošenja energije kod duktilnih konstrukcija

Postoje razne preporuke za izračunavanje faktora redukcije R_{μ} , međutim metoda N2 primjenjuje izraz koji su izvorno razvili Miranda i Bertero, 1994. godine [92] za Q-histerezni model [93] i 5% prigušenje te se koristi bilinearni odnos za određivanje ovog faktora:

$$R_{\mu} = \begin{cases} (\mu - 1)\frac{T}{T_{c}} + 1 & T < T_{c} \\ R_{\mu} = \mu & T \ge T_{c} \end{cases}$$
(4.3)

gdje T_c karakteristična vrijednost perioda gibanja tla, a definira prijelaz iz područja konstantnog ubrzanja u područje konstantnih brzina. Odabir faktora duktilnosti μ ovisi o zahtijevanoj razini duktilnosti koja se želi postići u konstrukciji. Što je faktor duktilnosti veći, veće je i nelinearno ponašanje konstrukcije.

3. METODA POSTUPNOG GURANJA (engl. pushover)

Metoda postupnog guranja provodi se na način da se konstrukcija podvrgne monotono rastućem bočnom opterećenju, što predstavlja inercijalne sile koje se u konstrukciji javljaju za vrijeme potresa kao posljedica ubrzanja temeljnog tla. Postupnim povećavanjem bočnog opterećenja dolazi do popuštanja pojedinih elemenata u konstrukciji, što utječe na smanjivanje krutosti. Kao rezultat postupnog guranja dobiva se karakteristična krivulja odnosa sile i pomaka, tzv. krivulja kapaciteta. Ordinata na krivulji je poprečna sila V u razini gornjeg ruba temelja (engl. base shear), dok je na apcisi karakteristične krivulje pomak vrha zgrade d_t kojeg zovemo krovni pomak (engl. top displacemet). Vektor bočnog opterećenja {P} određuje se na sljedeći način:

$$\{P\} = p \{\psi\} = p [m]\{\phi\}$$
(4.4)

gdje je

- *p* intenzitet bočnog opterećenja
- $\{\psi\}$ raspodjela bočnog opterećenja
- [m] dijagonalna matrica masa
- {φ} pretpostavljeni oblik pomaka

Raspodjela bočnog opterećenja { ψ } ovisi o pretpostavljenom obliku pomaka { ϕ } (4.4)

4. EKVIVALENTNI MODEL S JEDNIM STUPNJEM SLOBODE I KRIVULJA KAPACITETA

Potresni zahtjev (engl. demand) izražava se spektrom određenog potresa, a inače se daje za sustave s jednim stupnjem slobode. Kako bismo mogli međusobno uspoređivati potresni zahtjev s kapacitetom konstrukcije, oba sustava moraju biti prikazani za jedan stupanj slobode. Stoga je od modela okvira s više stupnjeva potrebno formirati ekvivalentni sustav s jednim stupnjem slobode, odnosno izvršit će se transformacija sustava s više stupnjeva slobode u ekvivalentni sustav s jednim stupnjem slobode. Ekvivalentna masa sustava s jednim stupnjem slobode:

$$m^* = \{\phi\}^T[m]\{1\} = \sum m_i \phi_i$$
(4.5)

Faktor transformacije kontrolira prijelaz sustava s više stupnjeva slobode na sustav s jednim stupnjem slobode:

$$\Gamma = \frac{\{\phi\}^{T}[m]\{1\}}{\{\phi\}^{T}[m]\{\phi\}} = \frac{\sum m_{i}\phi_{i}}{\sum m_{i}\phi_{i}^{2}} = \frac{m^{*}}{\sum m_{i}\phi_{i}^{2}}$$
(4.6)

Ista konstanta Γ koristi se za transformaciju pomaka i za transformaciju sila. Pomaci ekvivalentnog sustava s jednim stupnjem slobode:

$$d_t^* = \frac{d_t}{\Gamma} \tag{4.7}$$

Sile ekvivalentnog sustava s jednim stupnjem slobode:

$$F^* = \frac{V}{\Gamma} \tag{4.8}$$

Odnos sila i pomak ($V - d_t$) određen za sustav s više stupnjeva slobode, vrijedi i za ekvivalenti sustav s jednim stupnjem slobode ($F^* - d^*$) pod uvjetom da su i sila i pomak podijeljeni s faktorom transformacije Γ . Dobivenu krivulju kapaciteta idealizira se elasto-plastičnim odnosom sila-pomak na način da površine (energije) ispod stvarne i

idealizirane krivulje budu jednake, slika 4.1. Najprije je potrebno odrediti pomak d_m^* pri kojem mehanički sustav prelazi u mehanizam. Cijeli postupak prikazan je kroz detaljnu analizu čeličnih okvira u dijelu 4.1.5. ovog poglavlja.

F_y* - čvrstoća na granici popuštanja (pojava prvog plastičnog zgloba)

 d_y^* - pomak na granici popuštanja, određuje se prema izrazu: $d_y^* = 2\left(d_m^* - \frac{E_m^*}{F_y^*}\right)$

E^{*}_m - stvarna energija deformacija do formiranja plastičnog mehanizma A

Slika 4.1 Određivanje elasto – plastične ovisnosti između sile i pomaka [59]

Elastični period T^* ekvivalentnog sustava s jednim stupnjem slobode za bilinearni odnos sile i deformacije je jednak:

$$T^* = 2\pi \sqrt{\frac{m^* d_y^*}{F_y^*}}$$
(4.9)

Ubrzanje na granici popuštanja dobije se iz krivulje kapaciteta u AD formatu dijeljenjem sile F_y^* s ekvivalentnom masom m^* :

$$S_{ay} = \frac{F_y^*}{m^*}$$
(4.10)

POTRESNI ZAHTJEV (engl. demand) EKVIVALENTNOG SUSTAVA S JEDNIM STUPNJEM SLOBODE

Potresni zahtjev ekvivalentnog sustava s jednim stupnjem slobode može se odrediti grafičkim postupkom, slika 4.2. Zahtijevani spektar i bilinearna krivulja kapaciteta prikazuju se na istom dijagramu. Potrebno je nacrtati radijalni pravac koji odgovara elastičnom periodu T^* idealiziranog bilinearnog sustava. Presjecište radijalnog pravca sa elastičnim spektrom definira zahtijevano ubrzanje $S_{ae}(T^*)$ te odgovarajući zahtijevani elastični pomak $S_{de}(T^*)$, a koordinate presjecišta su jednake:

$$((S_{de}(T^*), S_{ae}(T^*)) = \left(S_{ae}(T^*)\left(\frac{T^*}{2\pi}\right)^2, S_{ae}(T^*)\right)$$
(4.11)

gdje je

 $S_{de}(T^*)$ - zahtijevani elastični pomak (engl. target displacement) ekvivalentnog sustava s jednim stupnjem slobode

 $S_{ae}(T^*)$ - zahtijevano elastično ubrzanje

Slika 4.2 Određivanje krovnog pomaka ekvivalentnog sustava s jednim stupnjem slobode [31]

Faktor redukcije R_{μ} može se odrediti iz omjera ubrzanja za elastični i neelastični sustav:

$$R_{\mu} = \frac{S_{ae}(T^*)}{S_{ay}}$$
(4.12)

Zahtijevana duktilnost μ definira se kao omjer:

$$\mu = \frac{s_d}{d_y^*} \tag{4.13}$$

Za sustave u kojima je period $T^* \ge T_c$, slika 4.2, zahtijevani neelastični pomak S_d jednak je zahtijevanom elastičnom pomaku $S_{de}(T^*)$:

$$S_d = S_{de}(T^*)$$
 (4.14)

te je zahtijevana duktilnost jednaka faktoru redukcije:

$$\mu = R_{\mu} \tag{4.15}$$

Za sustave u kojima je period $T^* < T_c$, slika 4.2, zahtijevana duktilnost može se izračunati iz izraza (4.3):

$$\mu = \left(R_{\mu} - 1\right)\frac{T_{c}}{T^{*}} + 1 \tag{4.16}$$

a zahtijevani pomak se može odrediti iz izraza:

$$S_{d} = S_{de}(T^{*}) \frac{1}{R_{\mu}} \left(1 + \left(R_{\mu} - 1 \right) \frac{T_{C}}{T^{*}} \right)$$
(4.17)

POTRESNI ZAHTJEV (engl. demand) ZA SUSTAV S VIŠE STUPNJEVA SLOBODE (CILJANI POMAK)

Vrijednosti ciljanog pomaka sustava s jednim stupnjem slobode potrebno je transformirati u globalni sustav s više stupnjeva slobode. Transformacijom se dobiva zahtijevani maksimalni krovni pomak, množenjem zahtijevanog pomaka sustava s jednim stupnjem slobode s faktorom transformacije Γ :

$$d_t = S_d \Gamma \tag{4.18}$$

7. LOKALNI POTRESNI ZAHTJEVI

Lokalni potresni zahtjev (relativni pomaci katova i rotacije) dobije se pomoću "pushover" proračuna, na isti način kako je opisano u 3. koraku. Konstrukcija se podvrgne monotono rastućem bočnom opterećenju s nepromijenjenom funkcijom raspodjele. Na taj način "guramo" konstrukciju dok ne dosegne ciljani pomak d_t .

8. PROCJENA PONAŠANJA KONSTRUKCIJE (ANALIZA OŠTEĆENJA)

Na temelju 7. koraka može se procijeniti ponašanje konstrukcije i analizirati pojava oštećenja. Najčešće korišteni parametar za ocjenu oštećenja je IDR "Inelastic Displacement Ratio", a definira se kao omjer relativnog pomaka kata i visine kata.

4.1.2 Preporučene vrijednosti relativnog prigušenja

Relativno prigušenje ξ je prisutno u svim konstrukcijama koje su izložene djelovanju potresa i ono je mjera disipacije energije koja je unesena u konstrukcije tijekom njenog djelovanja. Pri projektiranju konstrukcija u potresu relativno prigušenje ξ je moguće uzeti u obzir jedino procjenom koeficijenata koji se dobiju laboratorijskim mjerenjem na sličnim konstrukcijama. Vrijednosti relativnog prigušenja ovise o vrsti materijala i oblikovanju spojeva u konstrukciji. Preporuka je koristiti vrijednosti koje su dane u tablici 4.2. Većina građevinskih propisa ne daje vrijednosti faktora prigušenja ovisno o

konstrukcijskom materijalu te je specificirana vrijednost prigušenja od 5% [84]. Prema preporukama koje su dane u tablici 4.2 za čelične okvire sa vijčanim priključcima primijenit će se prigušenje od 5%.

Razina naprezanja	Vrsta i stanje konstrukcije	Faktor prigušenja ξ [%]		
	Zavareni čelik, prednapeti beton, dobro armirani beton sa malim pukotinama	2-3		
Radno naprezanje*: Ne više od polovine granice popuštanja	Armirani beton sa značajnim pukotinama	3-5		
	Vijčani i/ili zakovani spojevi u čeliku, vijčani ili čavlani spojevi u drvenim konstrukcijama	5-7		
	Zavareni čelik, prednapeti beton (bez potpunog gubitka prednapona)	5-7		
Radno naprezanje*: Malo ispod ili na	Prednapeti beton s potpunim gubitkom prednapona, armirani beton	7-10		
granici popuštanja	Vijčani i/ili zakovani spojevi u čeliku, vijčani spojevi u drvenim konstrukcijama	10-15		
	Čavlani spojevi u drvenim konstrukcijama	15-20		
*Radno naprezanje materijala odgovara naprezanju u konstrukciji pri uporabi (eksploataciji)				

Tablica 4.2 Preporučene vrijednosti relativnog prigušenja ξ [84]

4.1.3 Definiranje potresnog opterećenja za nelinearnu statičku metodu

Potresno djelovanje, odnosno potresni zahtjev (engl. seismic demand) za primjenu u nelinearnom statičkom proračunu definira se elastičnim spektrom odziva. Kako je potres slučajna pojava, na jednoj lokaciji postoje različiti zapisi potresa kao i pripadni spektar odziva. Stoga zapis jednog potresa nije dovoljan za provedbu proračuna konstrukcije. Potrebno je uzeti u obzir spektar koji zamjenjuje više potresa i koji karakterizira razmatrano područje. U tu svrhu se primjenjuju elastični spektri odziva na potresno djelovanje koji predstavljaju idealizirani spektar odziva sustava s jednim stupnjem slobode. Definiran je u ovisnosti o svojstvima tla te o svojstvima mehaničkog sustava s jednim stupnjem slobode.

Elastični spektar odziva na ubrzanje podloge definiran je sljedećim izrazima [59]:

$$s_{ae}(T) = a_g \cdot S \cdot \left[1 + \frac{T}{T_B} \cdot (\eta \cdot 2, 5 - 1)\right] \qquad 0 \le T \le T_B$$
(4.19)

$$s_{ae}(T) = a_g \cdot S \cdot \eta \cdot 2,5 \qquad T_B < T \le T_C \qquad (4.20)$$

$$s_{ae}(T) = a_g \cdot S \cdot \eta \cdot 2.5 \cdot \left[\frac{T_C}{T}\right] \qquad T_C < T \le T_D \qquad (4.21)$$

$$s_{ae}(T) = a_g \cdot S \cdot \eta \cdot 2.5 \cdot \left[\frac{T_C \cdot T_D}{T^2}\right] \qquad T > T_D \qquad (4.22)$$

gdje je

 $s_{ae}(T)$ - elastični spektar odziva

a_g - proračunsko ubrzanje u tlu tipa A

S - faktor tla

T - period vibracija linearnog sustava s jednim stupnjem slobode

T_B, T_C i T_D - vrijednosti koje definiraju početak dijelova spektra

η - korekcijski faktor prigušenja

Proračunsko ubrzanje a_g u tlu razreda A dobije se primjenom izraza:

$$a_g = \gamma_I \cdot a_{gR} \tag{4.23}$$

gdje je

 γ_I - faktor važnosti građevine

 a_{gR} - vrijednost poredbenog vršnog ubrzanja temeljnog tla

Faktor važnosti građevine predstavlja važnost funkcioniranja građevine neposredno nakon djelovanja potresa. Vrijednosti faktora važnosti kreću se od 1,4 za građevine čije je funkcioniranje neposredno nakon potresa od velike važnosti za javnu sigurnost do 0,8 za građevine od malog značaja za javnu sigurnost. Konstrukcija koja se analizira u doktoratu ima poslovnu namjenu te spada u II kategoriju važnosti te je vrijednost γ_I jednaka jedan.

Nelinearni statički proračuni okvira provedeni su za tri razine poredbenog vršnog ubrzanja a_{gR} : 0,3 g, 0,4 g i 0,5 g. Budući da faktor važnost γ_I ima vrijednost jedan proračunsko ubrzanje a_g je jednako poredbenom vršnom ubrzanju a_{gR} . Države koje

primjenjuju europsku normu EN 1998-1:2004 [59] teritorij države dijele na potresna područja u ovisnosti o njihovim tektonskim svojstvima te lokalnim potresnim aktivnostima u prošlosti. Na taj način je propisan Nacionalni dodatak [94] u kojem su dane vrijednosti poredbenog vršnog ubrzanja a_{gR} u tlu razreda A, a vrijednosti su različite ovisno o povratnom periodu potresnog djelovanja (475 god. i 95 god.).

Norma EN 1998-1:2004 [59] propisuje 5 tipova temeljnog tla te vrijednosti parametara koje definiraju elastični spektar odziva. Postoje dvije kategorizacije tih vrijednosti ovisno o vrijednostima površinske magnitude M_s . Kada je površinska magnituda $M_s > 5,5$ vrijedi spektar Tipa I, dok za vrijednosti $M_s < 5,5$ vrijede spektri Tipa II. Ovdje je pozornost usmjerena na jače potresne aktivnosti pa će se primijeniti spektri Tipa I za vrijednosti površinskih magnituda većih od 5,5. Odabran je tip temeljnog tla D što predstavlja nanose rahlog do srednje zbijenog nekoherentnog tla (s nešto mekih koherentnih slojeva ili bez njih), ili pretežno meko do dobro koherentno tlo. Budući da je konstrukcija vrlo elastična, odabrana je ova kategorija tla kako bi dobili veći intenzitet potresnog djelovanja na konstrukciju. Vrijednosti parametara za elastični spektar dane su u tablici 4.3.

Tablica 4.3 Vrijednosti parametara za definiranje horizontalnog elastičnog spektra odziva za potres Tipa I u tlu razreda D

Tip temeljnog tla	S	<i>T_B</i> [s]	<i>T</i> _C [s]	<i>T</i> _D [s]
D	1,35	0,20	0,8	2,0

Korekcijski faktor prigušenja za prigušenje od $\xi = 5\%$ iznosi $\eta = 1$. Za druge vrijednosti ξ faktor η se dobije iz izraza:

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55 \tag{4.24}$$

Na slici 4.3 dani su elastični spektri odziva za tri veličine ubrzanja a_g (0,3 g, 0,4 g i 0,5 g) za Potres Tipa I, razred tla D i prigušenje od 5%. Vrijednosti ubrzanja su normalizirane s vrijednošću gravitacije g.

Slika 4.3 Elastični spektri odziva ubrzanja podloge za potres Tipa I ($M_s > 5,5$), razred tla D i prigušenje $\xi = 5\%$

4.1.4 Podatci o konstrukciji

Za definiranje učinaka potresnog djelovanja odabran je mjerodavni okvir čelične konstrukcije poslovne namjene koja je smještena u Hrvatskom primorju (Novi Vinodolski). Objekt ima tlocrtne dimenzije 24x16 metara. Trodimenzionalni prikaz cijele konstrukcije zajedno s tlocrtnom dispozicijom i poprečnim presjecima dani su u Privitku A. Konstrukcija se sastoji od pet glavnih okvira na rasteru od 6 metara koji su povezani uzdužnim gredama. Međukatna konstrukcija izvedena je od trapeznog lima T50 i laganog betona debljine 10 cm. Konstrukcija je horizontalno stabilizirana u ravninama katova te je vertikalno stabilizirana u uzdužnom smjeru konstrukcije. Statički proračun proveden je na jednom glavnom čeličnom okviru konstrukcije koji je prikazan na slici 4.4. Čelični okvir je modeliran uz pretpostavku krutih priključaka te su analizirani učinci karakterističnog stalnog djelovanja te djelovanja snijega, vjetra i potresa koja odgovaraju lokaciji konstrukcije. Karakteristična djelovanja te njihova raspodjela na okviru dana su u Privitku B. Za dobivene vrijednosti unutarnjih sila provedeno je dimenzioniranje elemenata i priključaka.

Za potrebu potresnog proračuna okvira određene su vrijednosti težine konstrukcije. Ukupna težina građevine u trenutku djelovanja potresa računa se u skladu s odredbom da se stalna djelovanja $G_{k,i}$ kombiniraju s promjenjivim djelovanjima $Q_{k,i}$ na sljedeći način [94]:

$$W_{k,i} = \sum G_{k,i}'' + "\sum \psi_{E,i} \cdot Q_{k,i}$$
(4.25)

gdje je

$$\psi_{E,i}$$
 - koeficijent kombinacije za promjenjivo djelovanje dobije se iz: $\psi_{E,i} = \varphi \cdot \psi_{2,i}$

 φ - koeficijent ovisan o zauzetosti katova (za zgrade) [94]

 $\psi_{2,i}$ - faktor za nazovistalnu vrijednost promjenjivog djelovanja [95]

U tablici 4.4 određene su vrijednosti stalnog $G_{k,i}$ i uporabnog djelovanja $Q_{k,i}$ po katovima te ukupna vrijednost težina $W_{k,i}$ po katovima. Vrijednosti $w_{k,i}$ su vrijednosti težina koje preuzima jedan okvir konstrukcije.

Tablica	4.4	Težina	konstrukcije
---------	-----	--------	--------------

Djelovanje	Kat	Opis		Izno	s
		Grede glavnog okvira IPE 400		53,04	kN
		Stupovi glavnog okvira HEA 360		50,4	kN
		Stropna konstrukcija T50+10 cm betona		1190,4	kN
	1,2i3	Sekundarne grede IPE300		91,15	kN
		Horizontalna stabilizacija L 70x70x7		17,7	kN
Stalno		Pregradni zidovi		384	kN
		Ukupno	$G_{k,123}$	1786,7	kN
		Grede glavnog okvira IPE 400		53,04	kN
	Krov	Stupovi glavnog okvira HEA 360		25,2	kN
		Stropna konstrukcija T50+10 cm betona		875,5	kN
		Sekundarne grede IPE300		91,15	kN
		Horizontalna stabilizacija L 70x70x7		17,7	kN
		Ukupno	$G_{k,4}$	1062,6	kN
Uporabno	1, 2 i 3	Uredi (Kategorija B) $(\psi_{2,i} = 0,3)$	$Q_{k,123}$	1152	kN
	Krov	Krov (Kategorija H) $(\psi_{2,i} = 0,0)$	$Q_{k,4}$	288	kN
Ukupno	1, 2 i 3	$G_{k,123} + \varphi \cdot \psi_{2,i} Q_{k,1234}$ ($\varphi = 0,5$) φ – ostali katovi [94]	<i>W</i> _{<i>k</i>,123}	1991,6	kN
	Krov	$G_{k,4} + \varphi \cdot \overline{\psi_{2,i} Q_{k,4}}$	$W_{k,4}$	1088,5	kN
Ukupno	1, 2 i 3	$W_{k,123}/5$	<i>W</i> _{<i>k</i>,123}	398,32	kN
okvir	Krov	W _{k,4} /5	<i>W</i> _{<i>k</i>,4}	217,7	kN

U čvorovima okvira djeluju i koncentrirane mase od 10 tona od glavnog armiranobetonskog ziđa.

Na slici 4.5 prikazani su vlastiti oblici čeličnog okvira sa vrijednostima perioda za svaki ton.

Slika 4.5 Vlastiti oblici sa vrijednostima perioda

4.1.5 Analiza ponašanja okvira dobivenih nelinearnim statičkim proračunom (metodom N2)

Nelinearni statički proračuni provedeni su na ukupno 12 modela čeličnih okvira, s tri različite konfiguracije priključaka, dva tipa matematička modela priključaka (monotoni model i novi predloženi model histerezne anvelope) i tri veličine vršnih ubrzanja podloge. Radi bolje preglednosti, svi analizirani modeli okvira rezimirani su u tablici 4.5. Metoda postupnog guranja provedena je u programu SeismoStruct [32].

Naziv okvira	Tip priključaka	Model priključka	$a_g[g]$	
			0,3	
	EP1 3 Mi	EP1_3_M_Thineami model	0,4	
	EP1_3_C	EP1 3 C Model histerezne	0,3	
OKVIF1_C		anvelope	0,4	
			0,3	
Okvir2_M	EP2 3 Mi	EP2_3_M_1rilinearni model	0,5	
	EP2_3_C	EP2_3_C_ Model histerezne	0,3	
OKVII2_C		anvelope	0,5	
Olovir2 M		ED2 2 M Trilingerni medel	0,3	
	EP3_3_M i	EP2_3_M_Thinearni model	0,5	
Okvir3 C	EP3_3_C	EP2_3_C_ Model histerezne	0,3	
0	anvelope		0,5	
Detalji o tipovima priključaka – Vidi dio 3.2.2.1 Modeli priključaka EP1_3_M_Trilinearni model itd. (oznaka M) – Vidi dio 3.3.1. Modeli priključaka EP1_3_C_Model histerezne anvelope itd. (oznaka C) – Vidi dio 3.3.2.1.				

Matrica masa je jednaka:

	[51,9	0	0	0]	
	0	70,1	0	0	[+]
m =	0	0	70,1	0	[IJ
		0	0	70,1	

Proračuni su provedeni za modalnu raspodjela bočnih sila:

$$\{\phi\}^T = \{0, 2 \ 0, 6 \ 0, 9 \ 1\}$$

Vrijednost bočnih sila dobivena je iz izraza (4.4) te normaliziranih na način da vrijednost sile na zadnjem katu ima vrijednost 1, a raspodjela je prikazana na slici 4.6.

 ${P}^{T} = {0,29 \ 0,74 \ 1,05 \ 1}$

Slika 4.6 Model okvira sa prikazom unosa bočnog opterećenja (SeismoStruct model [32])

Sustav okvira s četiri stupnja slobode transformiran je u ekvivalentni sustav s jednim stupnjem slobode primjenom izraza (4.5) i (4.6). Masa ekvivalentnog sustava s jednim stupnjem slobode iznosi $m^* = 160,55 t$, a faktor transformacije ima vrijednost $\Gamma =$ 1,35. Svi okviri prvo su podvrgnuti postupnom guranju za vrijednost krovnog pomaka od jednog metra. Nakon toga je za svaki pojedini okvir analizirano ponašanje priključaka s ciljem utvrđivanja nastupanja plastifikacije. Puna plastifikacija dosegnuta je kada rotacija priključaka ima vrijednosti $\phi_{y,M}$ i $\phi_{y,C}$ čije su vrijednosti dane u tablicama 3.10 i 3.11. Otvaranjem zadnjeg plastičnog zgloba u priključku mehanički sustav prelazi u mehanizam, što definira najveći dosegnuti pomak okvira d_m (slika 4.1). Postupak je prikazan na Okviru1 M za vrijednost vršnog ubrzanja od 0,3 g. Na slici 4.7 prikazane su rotacije priključaka u vremenu tijekom guranja okvira za vrijednost pomaka vrha okvira od jednog metra. Crvene točkice označavaju pojavljivanje plastičnih zglobova, plava točkica označava lom u priključku, dok žute točkice označavaju priključke koji se nisu plastificirali. Pojavom granične rotacije u priključku 314 definira se granični pomak Okvira1 M koji iznosi 0,732 m. Ovaj pomak nastao je prije pune plastifikacije svih priključaka te se usvaja kao pomak pri kojem sustav prelazi u mehanizam (slika 4.1). Okvir je zatim podvrgnut novoj iteraciji postupnog guranja ali sada za vrijednost krovnog pomaka koji odgovara najvećem pomaku $d_m = 0.732m$, slika 4.8. Za dobivene krivulje kapaciteta napravljene su bilinearne idealizacije iz kojih su definirane vrijednosti F_y^* i d_y^* . Prema izrazu (4.9) određene su vrijednosti perioda T^* ekvivalentnog sustava te vrijednosti ubrzanja na granici popuštanja S_{ay} prema izrazu (4.10). Zatim su određene vrijednosti zahtijevanog ubrzanja $S_{ae}(T^*)$ te odgovarajući zahtijevani pomak $S_{de}(T^*)$ elastičnog sustava prema (4.11). Kako su vrijednosti perioda ekvivalentnih sustava T^* za sve okvire ispale veće od T_c vrijedi jednakost pomaka elastičnog i neelastičnog sustava, prema izrazu (4.14) i slici 4.2, te je $S_d = S_{de}(T^*)$. Redukcijski faktor R_{μ} određen je prema izrazu (4.12). Iz jednakosti pomaka vrijedi da je faktor duktilnosti μ jednak faktoru redukcije R_{μ} . Na kraju se vrijednost ciljanog pomaka S_d ekvivalentnog sustava s jednim stupnjem slobode transformira u sustav s četiri stupnja slobode prema izrazu (4.14) iz čega se dobije vrijednost krovnog pomaka d_t . Za Okvir1_M vrijednost d_t iznosi 0,45 m te je okvir podvrgnut drugoj iteraciji postupnog guranja za vrijednost krovnog pomaka od 0,45 m, slika 4.9. Cijeli postupak napravljen je za ukupno dvije iteracije. Konačne vrijednost krovnih pomaka te ostali parametri za analizirane okvire dani su u tablici 4.6.

Slika 4.7 Pojava plastičnih zglobova u Okviru1_M

Slika 4.8 Formiranje bilinearne krivulje u prvoj iteraciji

Na temelju dobivenih vrijednosti najvećih pomaka d_m i ciljanih pomaka d_t mogu se odrediti vrijednosti najjačeg potresa (najveći a_g) koji okviri mogu podnijeti. Na primjeru Okvira1_M koji je analiziran za spektar ubrzanja $a_g = 0.3g$, iz omjera najvećeg pomaka $d_m = 0.732m$ i ciljanog pomaka $d_t = 0.434m$ pomnožene s ubrzanjem 0.3 g

dobivena je procjena najvećeg potresa s ubrzanjem od 0,51 g. Analogno su dobivene vrijednosti za sve ostale okvire, a vrijednosti su dane u tablici 4.6.

Naziv okvira	a _g [g]	<i>d_m(A)</i> [<i>m</i>]	<i>F</i> _y [<i>kN</i>]	d_y^* [m]	T * [s]	S _{ay} [g]	$egin{array}{c} S_{ae}(T^*) \ [g] \end{array}$	$S_{de}(T^*)$ [m]	μ	d _t [cm]	Najveći a _g [g]
Okvir1_M	0,3	0,732	511,71	0,219	1,65	0,33	0,49	31,18	1,51	43,44	0,51
	0,4		532,19	0,239	1,69	0,34	0,64	44,0	1,89	59,4	0,50
Okvir1_C	0,3	0,542	492,9	0,207	1,63	0,31	0,49	31,97	1,59	43,16	0,38
	0,4		503,65	0,219	1,66	0,32	0,65	43,29	2,03	58,45	0,37
Okvir2_M	0,3	0,893	526,33	0,224	1,64	0,33	0,49	32,14	1,48	43,39	0,62
	0,5		548,44	0,248	1,69	0,35	0,79	55,25	2,29	74,59	0,60
Okvir2_C	0,3	0,632	532,16	0,207	1,57	0,34	0,52	30,74	1,53	41,50	0,46
	0,5		551,06	0,225	1,61	0,35	0,84	52,52	2,38	70,90	0,46
Okvir3_M	0,3	0,853	539,48	0,213	1,58	0,34	0,51	31,0	1,49	41,85	0,61
	0,5		567,32	0,241	1,64	0,36	0,82	53,59	2,28	72,35	0,59
Okvir3_C	0,3	0,652	549,72	0,207	1,54	0,35	0,53	30,30	1,51	40,91	0,48
	0,5		575,91	0,233	1,60	0,37	0,84	52,31	2,31	70,62	0,46

Tablica 4.6 Karakteristične vrijednosti parametara dobivene nelinearnim statičkim proračunom

4.2 Verifikacija ponašanja okvira nelinearnim dinamičkim proračunom

Nelinearni dinamički proračun (engl. time history) uporabom vremenskih zapisa potresa je najtočnija ali i najsloženija metoda. Proračun se provodi u vremenskim koracima čiji broj ovisi o duljini trajanja samog potresa, pri čemu se u svakom koraku proračunavaju dinamička svojstva konstrukcije. Takav proračun potrebno je provesti za najmanje tri zapisa potresa, a preporuka je uzeti sedam ili više potresa. Utrošak vremena potreban za ovu metodu puno je veći u odnosu na prethodno spomenute metode. Također treba napomenuti da je priprema zapisa potresa vremenski zahtjevan posao kao i obrada izlaznih rezultata kojih može biti jako puno. Kako ova metoda, osim utroška vremena nema drugih ograničenja, ona je primijenjena za verifikaciju ponašanja okvira dobivenih nelinearnim statičkim proračunom.

4.2.1 Definiranje potresnog opterećenja za nelinearnu dinamičku analizu

Potresno djelovanje za nelinearni dinamički proračun prikazuje se stvarnim ili umjetnim zapisima potresa u vremenu. Zapisi ubrzanja potresa u vremenu prikazuju se akcelerogramima, koji opisuju gibanja tla tijekom određenog potresa. Za jedan dogođeni potres moguće je dobiti cijeli niz vremenskih zapisa ubrzanja u vremenu koji se mogu značajno razlikovati. Te razlike ovise od o položaju mjernih uređaja, epicentralnoj udaljenosti, kvaliteti tla kroz koje putuju potresni valovi itd. Stoga je potrebno pažljivo odabrati zapise potresa koji će se primjenjivati u proračunu konstrukcije. Odabrani zapisi potresa svojim svojstvima moraju odgovarati spektrima ubrzanja za period jednak osnovnom periodu konstrukcije i ne bi smjeli značajno odstupati od propisanih spektara. Kako bi se pokrio širi spektar odziva potrebno je obuhvatiti zapise više različitih potresa.

Postavlja se pitanje kako predvidjeti događanje novih potresa na istoj lokaciji te ih obuhvatiti pri projektiranju novih konstrukcija. Stoga, kao alternativa realnim zapisima potresa, primjena vremenskih zapisa koji su prilagođeni spektrima odziva mogu biti puno bolje rješenje [2]. Takvi zapisi potresa generiraju se kombinacijom stvarnih potresa i spektara odziva. Na taj se način simuliraju nepravilnosti i slučajnosti koje su prisutne kod stvarnih potresa, ali pri tome odgovaraju svojstvima izglađenog elastičnog spektra. Podešavanje stvarnih zapisa potresa provedeno je u programu SeismoMatch 2016 [33] za tri razine vršnog ubrzanja 0,3 g, 0,4 g i 0,5 g. Odabrano je ukupno sedam potresa čija su svojstva dana u tablici 4.7.

Broj zapisa	Naziv potresa	Godina	Mjerna postaja	Magnituda	$a_g[g]$
No.1	Loma Prieta, SAD	1989	090 CDMG STATION 47381	M 6,9	0,37
No.2	Northridge, SAD	1994	090 CDMG STATION 24278	M 6,7	0,57
No.3	Kobe, Japan	1995	KAKAGOWA (CUE90)	M 6,9	0,34
No.4	Friulli, Italija	1976	TOLMEZZO (000)	M 6,5	0,35
No.5	Koceali, Turska	1999	YARIMCA (KOERI330)	M 7,4	0,35
No.6	Chi Chi, Taiwan	1999	TCU045	M 7,6	0,36
No.7	Imperial Valley, SAD	1979	AEROPUERTO MEXICALI	M 6,5	0,32

Tablica 4.7	' Svojstva	vremenskih	zapisa	potresa
-------------	------------	------------	--------	---------

Slika 4.10 Realni zapisi ubrzanja potresa u vremenu podešeni za elastični spektar ubrzanja za $a_g = 0.3g$

nastavak slike

Slika 4.11 Spektri ubrzanja podloge koji odgovaraju umjetnim zapisima potresa u vremenu

Na slici 4.10. prikazani su akcelerogrami podešeni spektru za vrijednost vršnog ubrzanja $a_g = 0.3g$, dok su na slici 4.11 prikazani odgovarajući spektri odziva podloge (crne linije) u odnosu na ciljani zaglađeni spektar (crvene linije).

4.2.2 Analiza ponašanja okvira dobivenih nelinearnim dinamičkim proračunom

Nelinearni dinamički proračuni provedeni su za tri skupine okvira s tri tipa priključaka. Analizirano je ponašanje na utjecaj sedam vremenskih zapisa stvarnih potresa koji su prethodno podešeni tako da odgovaraju spektrima za tri razine projektnog ubrzanja a_g od 0,3 g, 0,4 g i 0,5 g. Modeli okvira uzimaju u obzir stvarna ciklička svojstva priključaka primjenom Richard-Abbottovih modela koji su opisani u dijelu 3.3.2.2. te su parametri dani u dijelu 3.3.2.3 u tablici 3.16. Analizirani modeli okvira za nelinearne dinamičke proračune rezimirani su u Tablici 4.8.

Naziv okvira	Tip priključaka	Model priključka	$a_g[g]$	Zapisi potresa	
	EP1_3_C	ED1 2 Dishard Abbett	0,3		
OKVIF1_TH			0,4		
Okvir2_TH Okvir3_TH		EDO O Diskand Abbeth	0,3	No.1-No.7 (Tablica 4.7)	
	EP2_3_C	EP2_3_ RICHARD_ADDOLL	0,5		
	550.0.0		0,3	-	
	EP3_3_C	EP2_3_ Richard_Abbott	0,5		
Modeli priključaka	EP1_3_Richard_Abbott itc	I Vidi u dijelu 3.3.2.3.			

Tablica 4.8 Prikaz modela okvira za nelinearne dinamičke proračune

Prvo su provedeni dinamički proračuni na sva tri tipa čeličnih okvira (Okvir1_TH, Okvir2_TH i Okvir3_TH) za vremenske zapise koji odgovaraju spektru sa vršnim ubrzanjem od 0,3 g.

Za svaki dinamički proračun okvira određena je najveća dosegnuta rotacija priključaka. Na primjeru Okvira1_TH koji je ispitan na utjecaj potresa Loma Prieta (No.1) prikazane su rotacije priključaka u vremenu na slici 4.12 te je u priključku 312 određena najveća rotacija s vrijednošću od 0,048 radijana. Postupak je proveden za sve ostale okvire na isti način. Na temelju dobivenih vrijednosti određena je vrijednost najjačeg potresa koji okviri mogu podnijeti. Priključci u Okviru1_TH mogu ostvariti najveću rotaciju pri cikličkom djelovanju od 0,055 radijana. Iz omjera najveće računske rotacije i najveće izmjerene rotacije dobivene dinamičkim proračunom pomnožene s vršnim ubrzanjem 0,3*g* može se dobiti procjena najvećeg potresa koji okvir može pretrpjeti. Konkretno za primjer Okvira1_TH i potres Loma Prieta dobivena je vrijednost vršnog ubrzanja od

0,34 g (tablica 4.9). Najveći pomak vrha okvira ostvaren je pri najvećoj rotaciji priključka te je prikazan na slici 4.13. i iznosi 44,8 cm.

Slika 4.12 Rotacije priključaka u vremenu za okvir s priključcima EP1_3_Richard_Abbott i Loma Prieta potres za vršno ubrzanje od 0,3 g

Slika 4.13 Pomaci vrha okvira u vremenu za okvir s priključcima EP1_3_Richard_Abbott i Loma Prieta potres za vršno ubrzanje od 0,3 g

Vrijednosti ostalih procijenjenih najvećih potresnih djelovanja (a_g) za sve ostale zapise potresa i tipove okvira dane su u tablici 4.9. Za sve provedene analize dobivene su srednje vrijednosti procijenjenih potresnih djelovanja za svaki pojedini okvir.

Okvir1_TH (0,3g)		Okvir2_TH (0,3g)		Okvir3_TH (0,3g)		
φ [rad]	Najveći a _g [g]	φ [rad]	Najveći $a_g[g]$	φ [rad]	Najveći a _g [g]	
0,048	0,34	0,048	0,39	0,045	0,42	
0,039	0,42	0,036	0,53	0,036	0,53	
0,041	0,40	0,039	0,48	0,036	0,53	
0,041	0,40	0,041	0,46	0,037	0,51	
0,046	0,36	0,044	0,43	0,042	0,45	
0,042	0,39	0,040	0,47	0,035	0,54	
0,040	0,41	0,038	0,50	0,031	0,61	
0,042	0,39	0,040	0,47	0,037	0,51	
	ϕ [rad] $0,048$ $0,039$ $0,041$ $0,041$ $0,042$ $0,042$ $0,042$	Okvir1_TH (0,3g) ϕ [rad]Najveći $a_g[g]$ 0,0480,340,0390,420,0410,400,0410,400,0420,360,0420,390,0400,410,0420,39	Okvir1_TH (0,3g) Okvir2_ ϕ [rad] Najveći $a_g[g]$ ϕ [rad] 0,048 0,34 0,048 0,039 0,42 0,036 0,041 0,40 0,039 0,041 0,40 0,041 0,042 0,36 0,041 0,043 0,40 0,041 0,046 0,36 0,044 0,042 0,39 0,040 0,040 0,41 0,038 0,042 0,39 0,040	Okvir1_TH (0,3g)Okvir2_TH (0,3g) $\phi [rad]$ $\begin{array}{c} Najveći \\ a_g[g] \end{array}$ $\phi [rad]$ $\begin{array}{c} Najveći \\ a_g[g] \end{array}$ 0,0480,340,0480,390,0390,420,0360,530,0410,400,0390,480,0410,400,0410,460,0460,360,0440,430,0420,390,0400,470,0400,410,0380,500,0420,390,0400,47	Okvir1_TH (0,3g)Okvir2_TH (0,3g)Okvir3_ $\phi [rad]$ $\begin{array}{c} Najveći \\ a_g[g] \end{array}$ $\phi [rad]$ $\begin{array}{c} Najveći \\ a_g[g] \end{array}$ $\phi [rad]$ 0,0480,340,0480,390,0450,0390,420,0360,530,0360,0410,400,0390,480,0360,0410,400,0410,460,0370,0460,360,0440,430,0420,0420,390,0400,470,0350,0420,390,0400,470,0370,0420,390,0400,470,037	

Tablica 4.9 Vrijednosti najvećih rotacija priključaka u nelinearnim dinamičkim proračunima te procjena najvećeg potresnog ubrzanja tla a_a prema ostvarenim rotacijama

Na slikama 4.14, 4.15 i 4.16 prikazani su dijagrami apsolutnih pomaka okvira i relativnih pomaka katova okvira dobiveni nelinearnim dinamičkim proračunima Okvira1_TH, Okvira2_TH i Okvira3_TH na sedam zapisa potresa koji su dani u tablici 4.7. Gornji dijagrami (lijevi i desni) na sve tri slike predstavljaju odzive okvira za potresne zapise koji su prilagođeni spektrima s proračunskim ubrzanjem $a_g = 0.3 g$ u temeljnom tlu razreda A. Donji dijagrami (lijevi i desni) predstavljaju odzive čeličnih okvira za najjače srednje procijenjene vrijednosti potresnog opterećenja za svaki tip okvira. Okvir1_TH analiziran je na potresne zapise koji su prilagođeni najvećem procijenjenom vršnom ubrzanju od 0,4 g (zaokruženo od 0,39 g , tablica 4.9). Okvir2_TH analiziran je na potresne zapise koji su prilagođeni najvećem procijenjenom vršnom ubrzanju od 0,5 g (zaokruženo od 0,47 g, tablica 4.9), dok je Okvir3_TH analiziran na potresne zapise koji su prilagođeni najvećem procijenjenom vršnom ubrzanju od 0,5 g, tablica 4.9). Srednja vrijednost krovnog pomaka za Okvir1_TH ($a_g = 0.3g$) iznosi 38,7 cm (slika 4.14, gornja lijeva). Razlika između najveće i najmanje dobivene vrijednosti krovnog pomaka iznosi 11,9 cm dok

prosječno odstupanje od srednje vrijednosti iznosi 6 cm. Ove vrijednosti se povećavaju s povećanjem ubrzanja podloge $a_g = 0.4g$. Srednja vrijednost krovnog pomaka iznosi 45,7 cm (slika 4.14, donja lijeva), dok razlika između najveće i najmanje dobivene vrijednosti krovnog pomaka iznosi 17,5 cm. Prosječno odstupanje od srednje vrijednosti iznosi 8,8 cm. Najveći relativni pomak za Okvir1_TH ($a_g = 0.3g$) manifestirao se na prvom katu te prosječna vrijednost iznosi 11,9 cm (slika 4.14, gornja desna), dok za vrijednost ubrzanja podloge $a_g = 0.4g$ prosječna vrijednost relativnog pomaka iznosi 13,9 cm.

Slika 4.14 Rezultati apsolutnih i relativnih pomaka katova dobivenih nelinearnim dinamičkim proračunom za Okvir1_TH

Analizom rezultata potresnih odziva Okvira2_TH ($a_g = 0.3g$) dobivena je srednja vrijednost krovnog pomaka od 38,5 cm (slika 4.15, gornja lijeva). Razlika između najveće i najmanje dobivene vrijednosti krovnog pomaka iznosi 13,8 cm dok je prosječno odstupanje od srednje vrijednosti jednako 6,9 cm. Srednja vrijednost krovnog pomaka istog okvira dobivena dinamičkim proračunima na potrese s intenzitetom ubrzanja podloge od ($a_g = 0.5g$) iznosi 60,3 cm (slika 4.15, donja lijeva), dok razlika između najveće i najmanje dobivene vrijednosti krovnog pomaka iznosi 18,7 cm. Prosječno odstupanje od srednje vrijednosti iznosi 9,4 cm.

Slika 4.15 Rezultati apsolutnih i relativnih pomaka katova dobivenih nelinearnim dinamičkim proračunom za Okvir2_TH

Najveći relativni pomak za Okvir2_TH ($a_g = 0.3g$) manifestirao se na prvom katu te mu prosječna vrijednost iznosi 11,9 cm (slika 4.15, gornja desna), dok za vrijednost ubrzanja podloge $a_g = 0.4g$ prosječna vrijednost relativnog pomaka prvog kata iznosi 18,3 cm.

Srednja vrijednost krovnog pomaka za Okvir3_TH ($a_g = 0,3g$) iznosi 37,8 cm (slika 4.16, gornja lijeva). Razlika između najveće i najmanje dobivene vrijednosti krovnog pomaka iznosi 12,7 cm dok prosječno odstupanje od srednje vrijednosti iznosi 6,4 cm.

Slika 4.16 Rezultati apsolutnih i relativnih pomaka katova dobivenih nelinearnim dinamičkim proračunom za Okvir3_TH

Srednja vrijednost krovnog pomaka za isti okvir i intenzitet ubrzanja podloge $a_g = 0.5g$ iznosi 56,4 cm (slika 4.16, donja lijeva), dok razlika između najveće i najmanje dobivene vrijednosti krovnog pomaka iznosi 19,5 cm. Prosječno odstupanje od srednje vrijednosti iznosi 9,8 cm. Najveći relativni pomak za Okvir1_TH ($a_g = 0.3g$) manifestirao se na prvom katu te prosječna vrijednost iznosi 11,9 cm (slika 4.14, gornja desna), dok za vrijednost ubrzanja podloge $a_g = 0.4g$ prosječna vrijednost relativnog pomaka prvog kata iznosi 13,9 cm.

4.3 Usporedba ponašanja okvira određenih nelinearnom statičkom i nelinearnom dinamičkom metodom

Usporedbe apsolutnih pomaka okvira (slika 4.17) te relativnih pomaka katova okvira (slika 4.18) napravljene su za potresne odzive okvira koji uzimaju tri različita modela priključaka. Crvene linije predstavljaju nelinearne statičke odzive okvira koji uzima u obzir monotono ponašanje priključaka primjenom trilinearnog matematičkog modela (vidi dio 3.3.1). Zelene linije također predstavljaju nelinearne statičke odzive okvira, ali su priključci modelirani primjenom predloženog modela histerezne anvelope (vidi dio 3.3.2.1.). Plave linije predstavljaju nelinearne dinamičke odzive okvira u kojima su priključci modelirani primjenom modificiranog Richard-Abbottovog modela priključka (vidi dio 3.3.2.2.). Vrijednosti apsolutnih pomaka okvira i relativnih pomaka katova dobivenih nelinearnim dinamičkim proračunima predstavljaju srednje vrijednosti dobivene proračunima provedenih za sedam vremenskih zapisa koje su prikazane na slikama 4.14, 4.15 i 4.16.

Usporedbama rezultata apsolutnih pomaka dobivenih nelinearnim statičkim i nelinearnim dinamičkim proračunima okvira s priključcima EP1_3, EP2_3 i EP3_3 može se primijetiti da su pomaci okvira dobiveni primjenom modela histerezne anvelope priključaka manji od pomaka okvira dobiveni za okvire s monotonim modelima priključaka. Razlike se povećavaju s povećanjem intenziteta ubrzanja podloge. Najveća razlika između apsolutnih pomaka okvira dobivenih primjenom monotonog modela priključaka te primjenom modelom histerezne anvelope iznosi 3,8 cm te se odnosi na Okvir2_TH za intenzitet ubrzanja podloge od $a_g = 0,5g$ (slika 4.17, desna srednja). Vrijednosti relativnih pomaka katova okvira koje su dobivene primjenom novog modela histerezne anvelope priključka također daju manje vrijednosti u odnosu na pomake koji su dobiveni primjenom monotonog modela

141

priključka. Najveća razlika između navedenih relativnih pomaka iznosi 1 cm, a dobivena je za Okvir2_TH pri intenzitetu ubrzanja podloge od $a_g = 0.5g$ na prvom i drugom katu okvira (slika 4.18, desna srednja).

Provedena je i analiza procjene najjačeg intenziteta potresnog opterećenja (najveća vrijednost ubrzanja podloge a_a) koji okviri mogu podnijeti tijekom djelovanja potresa. Procijenjene vrijednosti razlikuju se ovisno o primijenjenom modelu priključka u pojedinim okvirima. U zadnjem stupcu tablice 4.6 dane su vrijednosti procjena intenziteta najvećeg ubrzanja podloge a_a koje su dobivene provedbom nelinearnih statičkih proračuna okvira s primjenom monotonih modela priključaka te primjenom predloženih modela histerezne anvelope. Prociene najjačeg intenziteta potresnog opterećenja također su dobivene i provedbom nelinearnih dinamičkih proračuna okvira na utjecaje sedam vremenskih zapisa potresa te su vrijednosti dane u tablici 4.9. Za Okvir1_M (monotoni model priključka) dobivena je procjena najveće prosječne vrijednosti ubrzanja podloge od $a_g = 0.5 g$, dok je za Okvir1_C (model histerezne anvelope) dobivena procjena najveće prosječne vrijednosti ubrzanja podloge od a_q = 0,37 g. Nelinearnim dinamičkim proračunom Okvira1_TH dobivena je procjena najveće prosječne vrijednosti ubrzanja podloge od $a_g = 0,39 g$. Usporedbama dobivenih procijenjenih vrijednosti potresnih opterećenja za Okvir1 utvrđeno je da se primjenom monotonog modela priključka u okviru dobiva odstupanje od 28,2% u odnosu na vrijednosti dobivene nelinearnim dinamičkim proračunom. Primjenom predloženog modela histerezne anvelope odstupanje najveće prosječne vrijednosti ubrzanja podloge u odnosu na vrijednosti dobivene nelinearnim dinamičkim proračunom iznosi 5,4%. Za Okvir 2 M je dobiveno najveće odstupanje od 32,6% u odnosu na vrijednosti dobivene nelinearnim dinamičkim proračunom Okvira2 TH, dok je za Okvir2 C u koji uzima model histerezne anvelope odstupanje 2,17% u odnosu na vrijednosti dobivene za Okvir2 TH. Odstupanje procijenjene vrijednosti najvećeg intenziteta potresa za Okvir3 M u odnosu na vrijednosti dobivene za Okvir3 TH iznosi 27,7%, dok za Okvir3_C odstupanje iznosi 7,84%.

142

Slika 4.17 Usporedbe apsolutnih pomaka okvira dobivenih nelinearnim statičkim i nelinearnim dinamičkim proračunima okvira s priključcima EP1_3, EP2_3 i EP3_3

Slika 4.18 Usporedbe relativnih pomaka katova okvira dobivenih nelinearnim statičkim i nelinearnim dinamičkim proračunima okvira s priključcima EP1_3, EP2_3 i EP3_3

5 ZAKLJUČCI I PRIJEDLOZI ZA BUDUĆA ISTRAŽIVANJA

U ovom poglavlju dani su temeljni doprinosi doktorskog rada, zaključci te prijedlozi za buduća istraživanja.

Na temelju provedenih istraživanja ostvareni su sljedeći doprinosi:

- Laboratorijskim ispitivanjima određena su monotona i ciklička svojstva europskih mekih čelika ispitanih u okviru ovog istraživanja čime je obogaćena baza podataka o osnovnim i histereznim svojstvima materijala
- Chabocheov model očvršćivanja čelika primijenjen je za definiranje cikličkih svojstava čelika sa nepravilnim promjenjivim deformacijama. Ovakav model obično se primjenjivao za kalibraciju parametara očvršćivanja za uzorke koji su izloženi kontroliranim i simetričnim ciklusima opterećenja i konstantnim rasponima deformacija.
- Za Chabocheov model očvršćivanja dani su kalibracijski parametri koji omogućuju primjenu ispitanih čelika u numeričkim simulacijama koje podržavaju ovaj model (Ansys, ABAQUS)
- Definirani su parametri oštećenja ispitanih čelika nakon dostizanja najveće vlačne čvrstoće za monotono i cikličko ponašanje
- Razvijeni su numerički modeli priključaka primjenom metode konačnih elemenata koji uzimaju u obzir geometrijsku nelinearnost sastavnih elemenata priključaka, prednapinjanje vijaka, kontakte između spojenih ploča i vijaka te nelinearna svojstva čelika. Provedene su simulacije na utjecaj monotonog savijanja te na utjecaj cikličkog savijanja za koje su nelinearna

svojstva materijala modelirana primjenom izotropno-kinematičkog modela očvršćivanja te primjenom modela oštećenja čelika. Ovakav model prvi je put primijenjen u modeliranju priključaka koji omogućuje praćenje degradacije čvrstoće i krutosti te mogućnost pojave loma nakon akumulacije deformacija

- Na temelju numeričkih rezultata cikličkih ponašanja priključaka razvijen je model histerezne anvelope. Ovakav model priključka ugrađen u model okvirne konstrukcije omogućuje točniju procjenu ponašanja primjenom nelinearnog statičkog potresnog proračuna u usporedbi s odzivom istog okvira koji uzima u obzir monotoni model ponašanja priključaka
- Dani su parametri za opisivanje histereznog modela primjenom modificiranog Richard-Abbottovog modela koji uzima u obzir degradaciju čvrstoće i krutosti te problem uštipnuća histerezne petlje koja nastaje uslijed otvaranja prostora između čelne ploče i pojasnice stupa.

Na temelju provedenih laboratorijskih ispitivanja čelika, numeričkih simulacija priključaka i potresnih analiza okvira mogu se izvesti sljedeći zaključci:

- Provedenim laboratorijskim ispitivanjima čelika te danim modelima ponašanja čelika obuhvaćen je cjelokupan uvid u monotono i cikličko ponašanje čelika ispitanih u okviru ovog istraživanja koji čine temeljnu podlogu za precizno modeliranje elemenata u potresu koji primjenjuju ispitane čelike
- Numeričkim simulacijama priključaka pri monotonom i cikličkom savijanju utvrđeno je da priključci u potresu imaju znatno manju sposobnost ukupnog deformiranja (do 54,5%) te da pri punoj plastifikaciji ostvaruju puno manje rotacije u odnosu na monotono savijanje (do 64,5%), tj. imaju manju duktilnost. Priključci pri monotonom savijanju imaju veliku sposobnost rotacije pri dosezanju najveće čvrstoće priključka te nije izražena nagla degradacija čvrstoće. Priključci pri cikličkom savijanju nakon pune plastifikacije pokazuju tendenciju očvršćivanja. Nakon dosegnute najveće čvrstoće dolazi do nagle degradacije čvrstoće i krutosti koja je nastala uslijed akumulacije deformacija tijekom cikličkog djelovanja.

 Nelinearnim statičkim proračunima okvira u kojima su priključci modelirani primjenom modela histerezne anvelope predviđaju se manje vrijednosti potresnog opterećenja koje okvir može podnijeti u odnosu na procjene koje su dobivene za okvire s monotonim modelima priključaka (do 32,6%). Procijenjene vrijednosti dobivene primjenom predloženog modela histerezne anvelope zadovoljavajući su u odnosu na vrijednosti dobivene nelinearnim dinamičkim proračunima.

Smjernice za daljnja istraživanja:

- Analizirati učinke variranja drugih parametara priključaka kao što su dimenzije stupa, grede, dimenzije vijaka na histerezno ponašanje priključaka te dati model histerezne anvelope u funkcionalnoj zavisnosti o tim parametrima
- Provesti laboratorijska ispitivanja ovih tipova priključaka za usporedbu ponašanja dobivenih numeričkim simulacijama
- Proširiti primjenu modela histerezne anvelope na drugu tipologiju priključaka kao što su priključci s kutnicima te na taj način proširiti primjenu ovog modela

6 LITERATURA

- [1] B. T. Adey, G. Y. Grondin and J. R. Cheng, "Cyclic loading of end plate moment connections," *Canadian Journal of Civil Engineering*, vol. 27, pp. 683-701, 2000.
- [2] V. Gioncu and F. M. Mazzolani, Ductility of Seismic Resistant Steel Structures, London: Spon Press, 2002.
- [3] F. M. Mazzolani and V. Piluso, Theory and design of seismic resistant steel frames, London: E&FN Spon, 1996.
- [4] A. Abolmaali, A. R. Kukreti, A. Motahari and M. Ghassemieh, "Energy disspation characteristics of semi-rigid connection," *Journal of Constructional Steel Research*, vol. 65, no. 5, p. 1187–1197, 2009.
- [5] A. R. Kukreti and A. Abolmaali, "Moment rotation hysteresis behaviour of top and seat angle steel frame connections," *Journal of Structural Engineering*, vol. 125, no. 8, pp. 810-820, 1999.
- [6] A. Abolmaali, J. H. Matthys, M. Farooqi and Y. Choi, "Development of moment-rotation model equations for flush end plate connections," *Journal of Constructional Steel Research*, vol. 61, no. 12, pp. 1595-1612, 2005.
- [7] G. Shi, Y. Shi and Y. Wang, "Behaviour of end-plate moment connections under earthquake loading," *Engineering structures*, vol. 29, pp. 703-716, 2007.
- [8] R. Korol, A. Ghobarah and A. Osman, "Extended End-Plate Connections Under Cyclic Loading: Behaviour and Design," *Journal of Constructional Steel Research*, vol. 16, pp. 253-280, 1990.
- [9] P. Krolo, M. Čaušević i M. Bulić, »Nelinearna seizmička analiza čeličnog okvira s djelomično krutim priključcima,« *Građevinar,* svez. 67, br. 6, pp. 573-583, 2015.
- [10] P. Nogueiro, R. Bento i L. Simoes da Silva, »Evaluation of the ductility demand in partial strength steel structures in seimsic areas using non-linear static analysis,« u *Progress in Steel, Composite and Aluminium Structures: Proceedings of the XI Int Conf on Metal Structures*, Rzeszow, Poland, Taylor & Francis, 2006, pp. 268-278.
- [11] P. Krolo, M. Čaušević and M. Bulić, "The extended N2 method in seismic design of steel frames considering semi-rigid joints," in *Proceedings of the Second European Conference on Earthquake Engineering*, Istanbul, Turkey, 2014.
- [12] P. Krolo, M. Čaušević and M. Bulić, "Seismic analysis of framed steel structure with semi-rigid joints," in *Eurosteel*, Napoly, Italy, 2014.
- [13] N. F. G. Youssef, D. Bonowitz and J. L. Gross, "A Survey of Steel Moment- Resisting Frame Buildings Affected by the 1994 Northridge Earthquake," National Institute of Standards and Technology, 1995.
- [14] W. E. Gates and M. Morden, "Proffesional Structural Engineering Experience Related to Welded Steel Moment Frames Following the Northridge Earthquake," *The Structural Design of Tall Buildings*, vol. 5, no. 1, pp. 29-44, 1996.

- [15] C. M. Uang and D. Bondad, "Static Cyclic Testing of Pre-Northridge nad Haunch Repaired Steel Moment Connections," SAC Report, 1996.
- [16] S. A. Civjan, "Investigation of Retrofit Techniques for Seismic Resistant Steel Moment Connections," in *PhD Dissertation*, The University of Texas at Austin, 1998.
- [17] M. R. Bahaari and A. N. Sherbourne, "Behaviour of eight-bolt large capacity endplate connections," *Computer & Structures*, vol. 77, no. 3, pp. 315-325, 2000.
- [18] R. Kiamanesh, A. Abolmaali and M. Razavi, "Effect of Circular Bolt Pattern on Behaviour of Extended End-Plate Connection," *Journal os Structural Engineering*, vol. 139, no. 11, pp. 1833-1841, 2013.
- [19] C. Choi and G. Chung, "Refined Three-Dimensional Finite Element Model for End-Plate Connection," *Journal of Structural Engineering*, vol. 122, no. 11, pp. 1307-1316, 1996.
- [20] O. S. Bursi and J. P. Jaspart, "Basic issues in the finite element simulation of extended end plate connections," *Computers & Structures*, vol. 69, no. 3, pp. 361-382, 1998.
- [21] A. Ghobarah, A. Osman and R. M. Korol, "Behaviour of extended end-plate connections under cyclic loading," *Engineering Structures,* vol. 12, no. 1, pp. 15-27, 1990.
- [22] D. Skejic, D. Dujmovic i D. Beg, »Behaviour of stiffened flange cleat joints, *Journal of Constructional Steel Research*, svez. 103, pp. 61-76, 2014.
- [23] M. Wang, Y. Shi, Y. Wang and G. Shi, "Numerical study on seismic behaviors of steel frame," *Journal of Constructional Steel Research*, vol. 90, pp. 140-152, 2013.
- [24] P. Nogueiro, L. S. da Silva, R. Bento and R. Simoes, "Numerical Implementation and Calibration of a Hysteretic Model with Pinching for the Cyclic Response of Steel joints," *Advances Steel Construction*, vol. 3, no. 1, pp. 459-484, 2007.
- [25] W. M. Wilson and H. F. Moore, Test to determine the rigidly of riveted joins in steel structure, Bulletin 104 ed., Urbana (USA): University of Illinois. Engineering experiment station, 1917.
- [26] C. Bernuzzi, R. Zandonini and P. Zanon, "Experimental Analysis and Modelling of Semi-rigid Steel Joints under Cyclic Reversal Loading," *Journal of Constructional Steel Research*, vol. 38, no. 2, pp. 95-123, 1996.
- [27] Y. Shi, G. Shi and Y. Wang, "Experimental and theoretical analysis of the moment-rotation behaviour of stiffened extended end-plate connections," *Journal of Constructional Steel Research*, vol. 63, no. 9, pp. 1279-1293, 2007.
- [28] SAC-SteelProject, Protocol for Fabrication, Inspection, Testing and Documentation of Beam-Column Connection Tests and Other Experimental Specimens, California: FEMA, 1997.
- [29] ABAQUS, "Analysis User's Manual I_V, Version 6.12," Dassault Systemes, Fremont, Calif, USA, 2012.
- [30] J. Chaboche, »Constitutive equations for cyclic plasticity and cyclic viscoplasticity,« *International Journal of Plasticity,* svez. 5, pp. 247-302, 1989.
- [31] P. Fajfar, "A Nonlinear Analysis Method for Performance Based Seismic Design," *Earthquake spectra*, vol. 16, no. 3, pp. 573-592, 2000.
- [32] SeismoSoft2016, "SeismoStruct 2016 A computer program for static and dynamic nonlinear analysis of framed structures," *Dostupno na http://www.seismosoft.com.*
- [33] SeismoSoft2016, »SeismoMatch 2016 A computer program for spectrum matching of earthquake records,« u *Dostupno na http://www.seismosoft.com*.
- [34] F. Zhou, Y. Chen i Q. Wu, »Dependence of the cyclic response of structural steel on loading history under large inelastic strain, *Journal of Constructional Steel Research*, svez. 104, pp. 64-73, 2015.
- [35] S. Yongjiu, W. Meng i W. Yuanqing, »Experimental and constitutive model study of structural steel under cyclic loading, *« Journal of Constructional Steel Research,* svez. 67, pp. 1185-1197, 2011.

- [36] G. Shi, M. Wang, Y. Bai, F. Wang, Y. Shi i Y. Wang, »Experimental and modeling study of highstrength structural steel under cyclic loading, *Engineering Structures*, svez. 37, pp. 1-13, 2012.
- [37] C. M. Uang, Q. S. K. Yu, S. Noel i J. Gross, »Cyclic testing of steel moment connections rehabilitated with rbs or welded haunch, *Journal of Structural Engineering*, svez. 126, br. 1, pp. 57-68, 2000.
- [38] P. Krolo, D. Grandić and Ž. Smolčić, "Experimental and Numerical Study of Mild Steel Behaviour under Cyclic Loading with Variable Strain Ranges," *Advances in Materials Science and Engineering*, vol. 2016, 2016.
- [39] C. European Standard, »EN 10025: Hot rolled products of structural steel,« European Committee for Standardization, Brussels, 2004.
- [40] C. European Standard, »EN ISO 6892-1: Metallic materials-Tensile testing-Part1: Method of test at room temperature, « European Committee for Standardization, Brussels, 2010.
- [41] TestXpertII, Instruction Manual, Ulm, Germany: ZwickGmbH&Co., 2015.
- [42] W. Ramberg and W. R. Osgood, "Description of stress-strain curves by three-parameters," National Advisory for Aeronautics, Technical report 902, 1943.
- [43] P. Dusicka, A. M. Itani and I. G. Buckle, "Cyclic response of plate steels under large inelastic strains," *Journal of Constructional Steel Research*, vol. 63, pp. 156-164, 2007.
- [44] K. M. Zhao and J. K. Lee, "Finite element analysis of the three-point bending of sheet metals," *Journal of Materials Processing Technology*, vol. 122, pp. 6-11, 2002.
- [45] S. M. H. Kabir, T.-I. Yeo and S.-H. Kim, "Characterization of Material Parameters," in *Proceedings* of the World Congress on Engineering, Vol II, London, 2009.
- [46] M. Rezaiee-Pajand and S. Sinaie, "On the calibration of the Chaboche hardening model and a modified hardening rule for uniaxial ratcheting prediction," *International Journal of Solids and Structures*, vol. 46, pp. 3009-3017, 2009.
- [47] S. J. Zakavi, M. Zehsaz and M. R. Eslami, "The ratchetting behavior of pressurized plain pipework subjected to cyclic bending moment with the combined hardening model," *Nuclear Engineering and Design*, vol. 240, pp. 726-737, 2010.
- [48] H. Wang, Y. Yan, M. Wan and X. Wu, "Experimental investigation and constitutive modeling for the hardening behavior of 57540 aluminum alloy sheet under two-stage loading," *International Journal of Solids and Structures*, vol. 49, pp. 3693-3710, 2012.
- [49] A. Kalnins, J. Rudolph and A. Willuweit, "Using the nonlinear kinematic hardening material model of Chaboche for elastic-plastic ratcheting analysis," in *Proceedings of the ASME 2013 Pressure Vessels and Piping Conference*, Paris, 2013.
- [50] V. N. Van Do, C. H. Lee and K. H. Chang, "A constitutive model for uniaxial/multiaxial ratcheting behavior of duplex stainless steel," *Materials and Design*, vol. 65, pp. 1161-1171, 2015.
- [51] M. Zehsaz, F. V. Tahami and H. Akhani, "Experimental determination of material parameters using stabilized cycle test to predict thermal ratcheting," UPB Scientific Bulletin, Series D: Mechanical Engineering, vol. 78, no. 2, 2016.
- [52] K. T. Herman, Teorija elastičnosti i plastičnosti, Zagreb: Element, 2008.
- [53] "Solid Mechanics Part II: Engineering Solid Mechanics," 10 2015. [Online]. Available: http://homepages.engineering.auckland.ac.nz/~pkel015/SolidMechanicsBooks/Part_II/08_Plastic ity/08_Plasticity_06_Hardening.pdf.
- [54] M. Jirasek i Z. P. Bažant, Inelastic Analysis of Structures, West Sussex, England: John Wiley & Sons, 2002.
- [55] J. Rice i D. Tracey, »On the Ductile Enlargement of Voids in Triaxial Stress Fields, *Journal of the Mechanics and Physics of Solids*, svez. 17, pp. 201-217, 1969.
- [56] EN 1993-1-8 Design of steel structures, Part 1-8: Design of joints, Brusseles: European Committee for Standardization (CEN), 2005.

- [57] P. Krolo, M. Čaušević and M. Bulić, "Nonlinear seismic analysis of steel frame with semi-rigid joints," *Građevinar*, vol. 67, no. 6, pp. 573-583, 2015.
- [58] »Design of structural connections to Eurocode 3-Frequently asked questions, « Building Research Establishment Ltd., Watford, 2003.
- [59] EN-1998-1, Eurocode 8: Design of structures for earthquake resistance Part 1: General rules, seismic actions and rules for buildings, Brussels: European Committee for Standardization (CEN), 2004.
- [60] K. Kaushik, A. K. Sharma and R. Kumar, "A Review of Finite Element Analysis of Beam to Column Endplate Bolted Connection," *Journal of Mechanical and Civil Engineering*, vol. 8, no. 1, pp. 97-103, 2013.
- [61] N. Krishnamurthy and D. E. Graddy, "Correlation between 2- and 3-dimensional finite element analysis of steel bolted end-plate connections," *Computers & Structures*, vol. 6, no. 4-5, pp. 381-389, 1976.
- [62] A. Sherbourne and M. Bahaari, "3D Simulation of End-Plate Bolted Connections," *Journal of Structural Engineering*, vol. 120, pp. 3122-3136, 1994.
- [63] M. Bahaari and A. Sherbourne, "3D simulation of bolted connections to unstiffened column-II Extended endplate connection," *Journal of Constructional Steel Research*, vol. 40, no. 3, pp. 189-223, 1996.
- [64] Y. I. Maggi, R. M. Goncalves, R. T. Leon and L. F. L. Ribeiro, "Parametric analysis of steel bolted end plate connections using finite element modeling," *Journal of Constructional Steel Research*, vol. 61, no. 5, pp. 689-708, 2005.
- [65] A. R. Kukreti and F. F. Zhou, "Eight-bolt endplate connection and its influence on frame behavior," *Engineering Structures*, vol. 28, no. 11, pp. 1483-1493, 2006.
- [66] G. Shi, Y. Shi, Y. Wang and M. A. Bradford, "Numerical simulation of steel pretensioned bolted end-plate connections of different types and details," *Engineering Structures*, vol. 30, pp. 2677-2686, 2008.
- [67] C. Díaz, P. Martí, M. Victoria, P. Marti and O. M. Querin, "FE model of beam-to column extended end-plate joins," *Journal of Constructional Steel Research*, vol. 67, no. 10, pp. 1578-1590, 2011.
- [68] M. Gerami, H. Saberi, V. Saberi and A. S. Daryan, "Cyclic behavior of bolted connections with different arrangement of bolts," *Journal of Constructional Steel Research*, vol. 67, pp. 690-705, 2011.
- [69] G. Shi, Y. Shi, Y. Wang and F. Bijlaard, "Monotonic Loading Tests on Semi-Rigid End-Plate Connections with Welded I-Shaped Columns and Beams," *Advances in Structural Engineering*, vol. 13, no. 2, pp. 215-229, 2010.
- [70] E. Mashaly, M. EL-Heweity, H. Abou-Elfath and M. Osman, "Finite element analysis of beam-tocolumn joints in steel frames under cyclic loading," *Alexandria Engineering Journal*, vol. 20, no. 1, pp. 91-104, 2011.
- [71] P. Krolo, D. Grandić and M. Bulić, "The guidelines for modeling the preloading bolts in the structural connection using finite element method," *Journal of Computational Engineering*, vol. 2016, 2016.
- [72] I. Džeba, B. Androić i D. Dujmović, Metalne konstrukcije 3, Zagreb: IA Projektiranje, 1994.
- [73] C. Díaz, P. Martí, M. Victoria and O. M. Querin, "Review on the modelling of joint behaviour in steel frames," *Journal of Constructional Steel Research*, vol. 67, no. 5, p. 741–758, 2011.
- [74] G. Attiogbe and G. Morris, "Moment-rotation functions for steel connections," *Journal of Structural Engineering*, vol. 117, pp. 1703-1718, 1991.
- [75] M. J. Frye and G. A. Morris, "Analysis of flexibly connected steel frames," Canadian Journal of Civil Engineering, vol. 2, no. 3, pp. 291-380, 1975.

- [76] Y. Yee and R. Melchers, "Momenr-Rotation Curve for Bolted Connections," *Journal of Structural Engineering*, vol. 112, no. 3, p. 615–635, 1986.
- [77] F. H. Wu i W. F. Chen, »A design model for semi-rigid connections, « *Engineering Structures*, svez. 12, pp. 88-97, 1990.
- [78] P. Nogueiro, L. S. da Silva, R. Bento and R. Simoes, "Calibration of model parameters for the cyclic response of end-plate beam-to-column steel-concrete composite joints," *Steel and Composite Structures*, vol. 9, no. 1, pp. 39-58, 2009.
- [79] R. Simoes and L. S. da Silva, "Cyclic behaviour of end-plate beam-to-column composite joints," Steel and Composite Structures, vol. 1, no. 3, pp. 355-376, 2001.
- [80] T. Wang, Z. Wang, J. Wang i J. Feng, »A Simplified Calculation Model for Moment-rotation Curve Used in Semi-rigid End-plate Connections, *Journal of Information & Computational Science*, svez. 10, br. 11, pp. 3529-3538, 2013.
- [81] G. Della Corte, G. De Matteis and R. Landolfo, "Influence of Connection Modelling on Seismic Response of Moment Resisting Steel Frames," in *Moment resistant connections of steel frames in seismic areas: Design and reliability (Ed. by Mazzolani, F.M.)*, London, E & FN Spoon, 2000, pp. 487-512.
- [82] P. Nogueiro, L. Simoes da Silva i R. Bento, »Influence of joint slippage on the cyclic resonse of steel frames, « u Proceedings of 9th International Conference on Civil and Structural Engineering Computing, B. H. V. in Topping, Civil- Comp press., 2003.
- [83] R. Simões, L. Simões de Silva i P. Cruz, »Cyclic behaviour of end-plate beam-to-column composite joints, « *International Journal of Steel and Composite Structures*, svez. 1, br. 3, pp. 355-376, 2001.
- [84] A. K. Chopra, Dynamics of Structures-Theory and Application to Earthquake Engineering, 4th Ed., New Yersey: Prentice Hall, 2012.
- [85] A. K. Chopra and R. K. Goel, "A modal pushover procedure to estimate seismic demands of buildings," *Earthquake Engineering and Structural Dynamics*, vol. 31, pp. 561-582, 2002.
- [86] M. Čaušević, Dinamika konstrukcija-Potresno inženjerstvo, Aerodinamika, Konstrukcijske euronorme, Zagreb: Golden marketing-Tehnička kniga, drugo dopunjeno izdanje, 2014.
- [87] F. E. M. A. (FEMA), "Improvement of Nonlinear Static Seismic Analysis Procedure-FEMA-440," Washington-DC, 2005.
- [88] P. Fajfar and P. Gaspersic, "The N2 method for the seismic damage analysis of RC buildings," Engineering & Structural Dynamics, vol. 25, pp. 23-67, 1996.
- [89] P. Fajfar, "Capacity Spectrum Method Based on Inelastic Demand Spectra," *Earthquake Engineering & Structural Dynamics,* vol. 28, pp. 979-993, 1999.
- [90] M. Kreslin and P. Fajfar, "The extended N2 method considering higher mode effect in both plan and elevation," *Bulletin of Earthquake Engineering,* vol. 10, no. 2, pp. 695-715, 2012.
- [91] P. Fajfar, D. Marušić and I. Peruš, "Torsional effects in the pushover-based seismic analysis of buildings," *Journal of Earthquake Engineering*, vol. 9, no. 6, pp. 831-854, 2005.
- [92] E. Miranda i V. V. Bertero, »Evaluation of Strength Reduction Factors for Earthquake-Resistant Design, *Earthquake spectra*, svez. 10, pp. 357-379, 1994.
- [93] P. Fajfar, T. Vidic i M. Fischinger, »On energy demand and supply in SDOF systems, « u *Towards a new seismic design methodology for buildings*, Ljubljana, Univerza v Ljubljani, FGG, IKPIR, 1996, pp. 169-190.
- [94] EN 1998-1:2008/NA:2011- Eurokod 8 Projektiranje potresne otpornosti konstrukcija 1. dio: Opća pravila, potresna djelovanja i pravila za zgrade - Nacionalni dodatak, Zagreb: HZN/TO 548, Konstrukcijski eurokodovi, 2011.
- [95] HRN EN 1990 Osnove projektiranja konstrukcija, Zagreb: Hrvatksi zavod za norme, 2011.

- [96] HRN EN 1991-1-1 Eurokod 1: Djelovanja na konstrukcije-Dio 1-1: Opća djelovanja Obujamske težine, vlastite težine i uporabna opterećenja zgrada, Zagreb: Hrvatski zavod za norme, 2012.
- [97] EN 1993-1-3 Eurocode 1: Action on structures Part 1-3: General actions Snow loads, Brusseles: European Committee for Standardization (CEN), 2003.
- [98] EN 1991-1-4 Eurocode 1: Action on structures Part 1-4: General actions Wind actions, Brusseles: European Committee for Standardization (CEN), 2005.

POPIS SLIKA

Slika 1.1 Priključci s čelnim pločama
Slika 1.2 Priključci s kutnicima
Slika 1.3 Usporedba cikličke i monotone krivulje za tri karakteristična priključaka
Slika 1.4 Shematski prikaz metodologije istraživanja 16
Slika 2.1 Strojno obrađeni standardni ispitni uzorak pravokutnog poprečnog presjeka [40] 22
Slika 2.2 Oblik i dimenzije ispitne epruvete [mm] [38]
Slika 2.3 Kidalica Zwick/Roell Z600
Slika 2.4 Hidrauličke čeljusti (600 kN) i prikaz ugrađenog uzorka za ispitivanje [38] 25
Slika 2.5 Dijagram naprezanja-deformacije $\sigma - \varepsilon$ za meki čelik
Slika 2.6 Krivulje $\sigma - \varepsilon$ dobivene standardnim vlačnim ispitivanjima [38]
Slika 2.7 Protokol opterećenja (deformiranja) za simulaciju cikličkog djelovanja prema SAC 2000 protokolu [28]
Slika 2.8 Protokoli deformiranja (pomaka) za ciklička ispitivanja uzoraka [38]
Slika 2.9 Zapisi deformacija i naprezanja u vremenu za uzorke C_S275_01, C_S275_02 i C_S275_03 [38]
Slika 2.10 Zapisi deformacija i naprezanja u vremenu za uzorke C_S275_04, C_S275_05 i C_S275_06 [38]
Slika 2.11 Zapisi deformacija i naprezanja u vremenu za uzorke C_S275_07, C_S275_08 i C_S275_09 [38]
Slika 2.12 Zapisi deformacija i naprezanja u vremenu za uzorke C_S355_01, C_S355_02 i C_S355_03 [38]
Slika 2.13 Zapisi deformacija i naprezanja u vremenu za uzorke C_S355_04, C_S355_05 i C_S355_06 [38]
Slika 2.14 Histerezne krivulje za čelik S275 [38]
Slika 2.15 Histerezne krivulje za čelik S355 [38]
Slika 2.16 Usporedba monotonih krivulja naprezanja-deformacije i histereznih krivulja za čelike S275 i S355 [38]
Slika 2.17 Konstitucijski model čelika [29]40
Slika 2.18 Izotropni model očvršćivanja: a) Dijagram naprezanja i deformacije za jednoosno stanje naprezanja, b) Razvoj plohe popuštanja [54]
Slika 2.19 Kinematički model očvršćivanja: a) Dijagram naprezanja i deformacije za jedoosno ispitivanje, b) Razvoj plohe popuštanja [54]43
Slika 2.20 Usporedba numeričkih simulacija i laboratorijskih ispitivanja za kalibracijske uzorke [38] 48
Slika 2.21 Usporedba numeričkih simulacija i laboratorijskih ispitivanja za čelik S275 [38] 50
Slika 2.22 Usporedba numeričkih simulacija i laboratorijskih ispitivanja za čelik S355 [38] 51
Slika 2.23 Numerički model uzorka čelika za simulacije monotonog djelovanja 53
Slika 2.24 Usporedba numeričkih simulacija i laboratorijskih ispitivanja za čelike S275 i S355 pri monotonom vlačnom djelovanju

Slika 2.25 Usporedba numeričke simulacije i laboratorijskih ispitivanja za čelik S355 pri cikličkom djelovanju
Slika 3.1 Razredba priključaka prema rotacijskoj krutosti 57
Slika 3.2 Prikaz numeričkog modela zavarenog priključka stupa i grede razredba zavarenog priključka prema rotacijskoj krutosti, Krolo i suradnici, 2015 [57]
Slika 3.3 Vijčani priključci stupa i grede: a) jednostrani priključak, b) dvostrani priključak 59
Slika 3.4 Shematski prikaz laboratorijskog ispitivanja priključka [mm] [7]64
Slika 3.5 Odnosi naprezanja i deformacija za čelične elemente i vijke
Slika 3.6 Shematski prikaz modela priključka s prikazom dimenzija, unosa djelovanja i rubnim uvjetima [mm]
Slika 3.7 Protokol opterećivanja za simulacije cikličkog djelovanja na priključcima67
Slika 3.8 Numerički model kalibracijskog priključka 67
Slika 3.9 Usporedbe odnosa momenta savijanja i rotacije priključaka $(M - \phi)$ dobivenih numeričkim simulacijama s rezultatima laboratorijskih ispitivanja za a) monotono djelovanje i b) cikličko djelovanje
Slika 3.10 Oblik otkazivanja priključka pri monotonom djelovanju: a) Numerički model, b) Laboratorijski uzorak prema Shi i suradnici [69] te pri cikličkom djelovanju c) Numerički model i d) Laboratorijski uzorak prema Shi i suradnici [7]
Slika 3.11 Podatci o priključcima a) geometrija priključka EP1_1; dimenzije čelnih ploča sa prikazom vertikalnih razmaka između redova vijaka za b) p=130 mm; c) p=140 mm ii d) p=150 mm
Slika 3.12 Plastična svojstva čelika
Slika 3.13 Prikaz mreže konačnih elemenata: a) vijak (2080 konačnih elemenata), b) čelna ploča debljine 15 mm (3060 konačnih elemenata)
Slika 3.14 Prikaz mreže konačnih elemenata priključak stupa i grede sa obostrano produljenom čelnom pločom (19570 konačnih elemenata)
Slika 3.15 Kontakti između vijaka i pločastih elemenata priključka: a) i b) su "friction" i "hard" kontakti; c) i d) su "frictionless" kontakti [71]
Slika 3.16 Definiranje "master" i "slave" ploha u kontaktnim zonama
Slika 3.17 Spoj limova s visokovrijednim vijcima77
Slika 3.18 Prednapinjanje vijka "bolt load" tehnikom78
Slika 3.19 Naprezanje u vijku dobiveno "bolt load" tehnikom prednapinjanja
Slika 3.20 Naprezanja u vijcima primjenom "initial stress" tehnike prednapinjanja, a) početno stanje naprezanja pri vrijednosti od 970 MPa, b) stanje naprezanja u vijku nakon aktiviranja kontakata 80
Slika 3.21 Statički sustav priključka s prikazanim položajem vanjskog opterećenja i rubnim uvjetima 82
Slika 3.22 Rotacija priključka
Slika 3.23 Krivulje odnosa momenta savijanja i rotacija u priključcima EP1_1, EP1_2 i EP1_3 za monotoni i ciklički odziv
Slika 3.24 Krivulje odnosa momenta savijanja i rotacija u priključcima EP2_1, EP2_2 i EP2_3 za monotoni i ciklički odziv
Slika 3.25 Krivulje odnosa momenta savijanja i rotacija u priključcima EP3_1, EP3_2 i EP3_3 za monotoni i ciklički odziv

Slika 3.26 Pune plastifikacije priključaka EP1_1, EP1_2 i EP1_3 pri cikličkom djelovanju	. 89
Slika 3.27 Pune plastifikacije priključaka EP2_1, EP2_2 i EP2_3 pri cikličkom djelovanju	. 90
Slika 3.28 Pune plastifikacije priključaka EP3_1, EP3_2 i EP3_3 pri cikličkom djelovanju	. 91
Slika 3.29 Trilinearni matematički model monotonog ponašanja priključka [80]	. 96
Slika 3.30 Prijedlog modela histerezne anvelope	. 98
Slika 3.31 Razvoj modela histerezne anvelope za priključke EP1_1, EP1_2 i EP1_3	100
Slika 3.32 Razvoj modela histerezne anvelope za priključke EP2_1, EP2_2 i EP2_3	101
Slika 3.33 Razvoj modela histerezne anvelope za priključke EP3_1, EP3_2 i EP3_3	102
Slika 3.34 Richard-Abbottov model	103
Slika 3.35 Modificirani Richard-Abbottov model za opis cikličkog ponašanja priključka za simetri presjeke bez smanjenja krutosti [83]	čne 104
Slika 3.36 Modificirani Richard-Abbottov model za simetrične priključke sa različitim vrijednost pozitivnog i negativnog momenta te za asimetrične presjeke	ima 105
Slika 3.37 Grana histerezne krivulje s "pinching" učinkom	106
Slika 3.38 Utjecaj parametra C na oblik histerezne krivulje	107
Slika 3.39 Model veznog elementa (linka) za definiranje parametara modificiranog Richard-Abbotto modela	vog 108
Slika 3.40 Usporedba histereznih krivulja dobivenih numeričkim simulacijama s histereznim krivulja dobivenim modificiranim Richard-Abbottovim modelom	ama 110
Slika 4.1 Određivanje elasto –plastične ovisnosti između sile i pomaka [59]	116
Slika 4.2 Određivanje krovnog pomaka ekvivalentnog sustava s jednim stupnjem slobode [31]	117
Slika 4.3 Elastični spektri odziva ubrzanja podloge za potres Tipa I ($Ms > 5,5$), razred tla D i priguše $\xi = 5\%$	∍nje 122
Slika 4.4 Dvodimenzionalni model okvira	123
Slika 4.5 Vlastiti oblici sa vrijednostima perioda	125
Slika 4.6 Model okvira sa prikazom unosa bočnog opterećenja (SeismoStruct model [32])	127
Slika 4.7 Pojava plastičnih zglobova u Okviru1_M	128
Slika 4.8 Formiranje bilinearne krivulje u prvoj iteraciji	129
Slika 4.9 Formiranje bilinearne krivulje u drugoj iteraciji	129
Slika 4.10 Realni zapisi ubrzanja potresa u vremenu podešeni za elastični spektar ubrzanja za a. 0,3 <i>g</i>	<i>g</i> = 132
Slika 4.11 Spektri ubrzanja podloge koji odgovaraju umjetnim zapisima potresa u vremenu	134
Slika 4.12 Rotacije priključaka u vremenu za okvir s priključcima EP1_3_Richard_Abbott i Loma Pri potres za vršno ubrzanje od 0,3 g	ieta 136
Slika 4.13 Pomaci vrha okvira u vremenu za okvir s priključcima EP1_3_Richard_Abbott i Loma Pr potres za vršno ubrzanje od 0,3 g	ieta 136
Slika 4.14 Rezultati apsolutnih i relativnih pomaka katova dobivenih nelinearnim dinamič proračunom za Okvir1_TH	kim 138

Slika 4.15 Rezultati apsolutnih i relativnih pomaka katova dobivenih nelinearnim dinamičkim proračunom za Okvir2_TH
Slika 4.16 Rezultati apsolutnih i relativnih pomaka katova dobivenih nelinearnim dinamičkim proračunom za Okvir3_TH
Slika 4.17 Usporedbe apsolutnih pomaka okvira dobivenih nelinearnim statičkim i nelinearnim dinamičkim proračunima okvira s priključcima EP1_3, EP2_3 i EP3_3
Slika 4.18 Usporedbe relativnih pomaka katova okvira dobivenih nelinearnim statičkim i nelinearnim dinamičkim proračunima okvira s priključcima EP1_3, EP2_3 i EP3_3
Slika A.1 3D vizualizacija konstrukcije
Slika A.2 Tlocrtna dispozicija
Slika A.3 Uzdužni presjek okvira
Slika A.4 Poprečni presjek okvira
Slika B.1 Raspodjela stalnog djelovanja na čeličnom okviru162
Slika B.2 Raspodjela uporabnog djelovanja na čeličnom okviru163
Slika B.3 Raspodjela djelovanja snijega na čeličnom okviru163
Slika B.4 Raspodjela djelovanja vjetra (Θ=0)164
Slika B.5 Raspodjela djelovanja vjetra (O=90°)164
Slika B.6 Raspodjela horizontalnih sila po katovima

POPIS TABLICA

Tablica 1.1 Pregled laboratorijskih istraživanja priključaka na utjecaj cikličkog djelovanja	8
Tablica 2.1 Udio elemenata u kemijskom sastavu taline čelika S275 i S355 (%) [38]	22
Tablica 2.2 Osnovna mehanička svojstva čelika S275 i S355 dobiveni standardnim vlačnim ispitiva [38]	anjima 26
Tablica 2.3 Vrijednosti vertikalnih amplituda u svakom koraku [28]	28
Tablica 2.4 Podatci o protokolima deformiranja [38]	28
Tablica 2.5 Kalibracijski parametri za čelike S275 i S355 [38]	47
Tablica 2.6 Rezultati laboratorijskih ispitivanja i numeričkih simulacija za čelične uzorke [38]	52
Tablica 2.7 Parametri za definiranje elastičnih i plastičnih svojstava čelika S275 za monotono djelo	ovanje 53
Tablica 2.8 Parametri za definiranje modela oštećenja čelika S275 za monotono djelovanje	53
Tablica 2.9 Parametri za definiranje elastičnih i plastičnih svojstava čelika S355 za monotono djelo	ovanje 54
Tablica 2.10 Parametri za definiranje modela oštećenja čelika S355 za monotono djelovanje	54
Tablica 2.11 Parametri modela oštećenja čelika S355 za cikličko djelovanje	56
Tablica 3.1 Razredba vijčanih priključaka prema rotacijskoj krutosti	59
Tablica 3.2 Pregled numeričkih modela priključka stupa i grede s čelnom pločom	62
Tablica 3.3 Svojstva čelika Q345B [23]	65
Tablica 3.4 Svojstva čelika 10.9 za visokovrijedne vijke [23]	65
Tablica 3.5 Usporedba rezultata numeričkih simulacija i laboratorijskih ispitivanja	68
Tablica 3.6 Detalji o priključcima	70
Tablica 3.7 Podatci o poprečnim presjecima stupa i grede [72]	70
Tablica 3.8 Numerički proračun priključka primjenom "bolt load" tehnike prednapinjanja	78
Tablica 3.9 Numerički proračun priključka primjenom početnog naprezanja ("initial stress")	79
Tablica 3.10 Vrijednosti vertikalnih pomaka po ciklusu	81
Tablica 3.11 Numerički rezultati dobiveni simulacijama monotonih djelovanja na priključcima	84
Tablica 3.12 Numerički rezultati dobiveni simulacijama cikličkih djelovanja na priključcima	84
Tablica 3.13 Usporedbe rezultata dobiveni monotonim i cikličkim simulacijama priključaka	85
Tablica 3.14 Vrijednosti parametara trilinearnog matematičkog modela	96
Tablica 3.15 Vrijednosti parametara matematičkog modela histerezne anvelope	99
Tablica 3.16 Parametri priključaka za modificirani Richard-Abbottov model	109
Tablica 4.1 Potresni proračun konstrukcija	111
Tablica 4.2 Preporučene vrijednosti relativnog prigušenja ξ [84]	119
Tablica 4.3 Vrijednosti parametara za definiranje horizontalnog elastičnog spektra odziva za potre I u tlu razreda D	s Tipa 121
Tablica 4.4 Težina konstrukcije	124

Tablica 4.5 Prikaz modela okvira za nelinearne statičke proračune	126
Tablica 4.6 Karakteristične vrijednosti parametara dobivene nelinearnim statičkim proračunom	130
Tablica 4.7 Svojstva vremenskih zapisa potresa	131
Tablica 4.8 Prikaz modela okvira za nelinearne dinamičke proračune	135
Tablica 4.9 Vrijednosti najvećih rotacija priključaka u nelinearnim dinamičkim proračunima te procje najvećeg potresnog ubrzanja tla ag prema ostvarenim rotacijama	ena 137

Tablica B.1 Karakteristične vr	ijednosti stalnog djelovanja	162
--------------------------------	------------------------------	-----

PRIVITAK A. KONFIGURACIJA KONSTRUKCIJE

Slika A.1 3D vizualizacija konstrukcije

Slika A.2 Tlocrtna dispozicija

Slika A.3 Uzdužni presjek okvira

Slika A.4 Poprečni presjek okvira

PRIVITAK B. DJELOVANJA NA KONSTRUKCIJU

Stalno djelovanje

U tablici B.1 dane su vrijednosti stalnog djelovanja po katovima okvira, a na slici B.1 prikazana je raspodjela stalnog djelovanja.

Tablica B.1	Karakteristične	vrijednosti	stalnog	djelovanja

Međukatna konstrukcija etaže		jedinica	debljina sloja		jedinica
Pregradni zidovi	1	kN/m ²	1	1	kN/m ²
Trapezni lim T50, debljina t=0,63 mm	0,063	kN/m ²	-	0,063	kN/m ²
Lagani beton debljine 10 cm	10	kN/m ³	0,1	1	kN/m ²
Toplinska izolacija debljine 2 cm	1	kN/m ³	0,02	0,02	kN/m ²
Cementni estrih debljine 4 cm	22	kN/m ³	0,04	0,88	kN/m ²
Keramičke pločice 8 mm	17	kN/m ³	0,008	0,136	kN/m ²
		Ukupno	g _k	3,10	kN/m ²

Djelovanje koje preuzima jedan okvir je g_k =3,10 x 6= 18,6 kN/m

Konstrukcija krova		jedinica	debljina sloja		jedinica
Trapezni lim T50, 0,63mm	0,063	kN/m ²	-	0,063	kN/m ²
Lagani beton debljine 10 cm	10	kN/m ³	0,1	1	kN/m ²
Toplinska izolacija debljine 8 cm	1	kN/m ³	0,08	0,08	kN/m ²
Beton za pad debljine 5 cm	22	kN/m³	0,05	1,1	kN/m ²
Triflex D završni sloj	0,035	kN/m ²	-	0,035	kN/m ²
		Ukupno	g _k	2,28	kN/m ²

Djelovanje koje preuzima jedan okvir je $g_k = 2,28 \times 6 = 13,68 \text{ kN/m}$

Slika B.1 Raspodjela stalnog djelovanja na čeličnom okviru

Uporabno djelovanje

Građevina ima funkciju poslovnog prostora i kao takva pripada kategoriji B (uredi) za koju je određena karakteristična vrijednost uporabnog djelovanja $3 kN/m^2$. Uporabno opterećenje za krov koji nije pristupačan, osim za održavanje i popravke pripada kategoriji H pa je odabrana karakteristična vrijednost od $0,75 kN/m^2$. Vrijednosti su određene primjenom norme HRN EN 1991-1 [96]. Raspodjela uporabnog djelovanja po katovima okvira prikazana je na slici B.2

Slika B.2 Raspodjela uporabnog djelovanja na čeličnom okviru

Djelovanje snijega

Analiza djelovanja snijega provedena je prema normi EN 1991-1-3 [97], a na slici B.3 prikazana je raspodjela snijega na zadnjem katu okvira.

Slika B.3 Raspodjela djelovanja snijega na čeličnom okviru

Djelovanje vjetra

Analiza djelovanja vjetra provedena je prema Europskoj normi EN 1991-1-4 [98], a raspodjela vjetra za dva horizontalna smjera prikazana je na slikama B.4 i B.5

Slika B.4 Raspodjela djelovanja vjetra (Θ=0)

Slika B.5 Raspodjela djelovanja vjetra (Θ=90°)

Djelovanje potresa

Djelovanje potresa u statičkom proračunu definirano je primjenom ekvivalentnih horizontalnih sila koje su prikazane na slici B.6 primjenom norme HRN EN 1998-1-1 [94]

Slika B.6 Raspodjela horizontalnih sila po katovima

ŽIVOTOPIS

Paulina Krolo (rođ. Katavić) rođena je 26. studenog 1984. godine u Slavonskom Brodu. Osnovnu školu završila je 1999. godine, a srednju Tehničku školu građevinskog usmjerenja završava 2003. godine u Slavonskom Brodu. Daljnje školovanje nastavlja u Rijeci na Građevinskom fakultetu gdje je diplomirala u travnju 2008. godine na diplomskom radu s naslovom "Projekt čelične konstrukcije olimpijskog plivačkog bazena u Vukovaru te stječe diplomu inženjera građevinarstva. U lipnju iste godine zapošljava se u projektnom birou "Ratio Projectum" u Slavonskom Brodu. Nakon četiri mieseca prelazi na Građevinski fakultet u Rijeci gdje je zaposlena kao asistent na Zavodu za nosive konstrukcije i tehničku mehaniku. Održava vježbe na kolegijima Osnove čeličnih konstrukcija i Čelične konstrukcije na preddiplomskom, diplomskom i stručnom studiju te kolegij Mostovi na preddiplomskom studiju. 2008. godine upisuje poslijediplomski doktorski studij građevinarstva na Građevinskom fakultetu u Rijeci, smjer Mehanika konstrukcija. U okviru doktorskog istraživanja 2014. godine boravila je na tromjesečnom istraživanju na Fakultetu za Gradbeništvo in Geodezijo u Ljubljani pod mentorstvom profesora Petera Fajfara, gdje je istraživala nelinearnu statičku metodu N2 za potresni proračun konstrukcija. Kao znanstveni istraživač surađivala je na trima znansveno-istraživačkim projektima "Razvoj konstrukcija povećane pouzdanosti s obzirom na potrese" (2007.-2012.) financiran od Ministarstva znanosti, obrazovanja i sporta, "Razvoj konstrukcija povećane pouzdanosti s obzirom na potrese" uz financijsku potporu Sveučilišta u Rijeci te "Procjena oštećenja i ojačanje građevinskih konstrukcija" uz financijsku potporu Sveučilišta u Rijeci. Od 2016. godine član je Tehničkog pododbora za metalne konstrukcije i Tehničkog pododbora za konstrukcijske eurokodove Hrvatskog zavoda za norme.

POPIS OBJAVLJENIH RADOVA

- [1] Krolo, Paulina; Grandić, Davor; Smolčić, Željko. Experimental and Numerical Study of Mild Steel Behaviour under Cyclic Loading with Variable Strain Ranges. Advances in material science and engineering. 2016 (2016),13 pages, doi:10.1155/2016/7863010
- [2] Krolo, Paulina; Grandić, Davor; Bulić, Mladen. The Guidelines for Modelling the Preloading Bolts in the Structural Connection Using Finite Element Methods.

Journal of Computational Engineering. 2016 (2016), 8 pages, doi.org/10.1155/2016/4724312

- [3] Krolo, Paulina; Čaušević, Mehmed; Bulić, Mladen. Nelinearna seizmička analiza čeličnog okvira s djelomično krutim priključcima. *Građevinar*, 67/6: 573-583, 2015
- [4] Krolo, Paulina; Čaušević, Mehmed; Bulić, Mladen. Seismic analysis of framed steel structure with semi-rigid joints. *Proceedings of the 7th European Conference on Steel and Composite Structures /* Landolfo, Raffaele; Mazzolani, Federico M. (ur.). Napoli, Italy: ECCS, 1-6, 2014
- [5] Krolo, Paulina; Čaušević, Mehmed; Bulić, Mladen. The extended N2 method in seismic design of frames considering semi-rigid joints. *Proceedings of the 2th European Conference on Earthquake Engineering and Seismology, paper 302/* Ansal, Atilla (ur.). Istanbul, Turkey: European Association of Earthquake Engineering (EAEE) 74-84, 2014
- [6] Krolo, Paulina; Turk, Goran. Određivanje pouzdanosti konstrukcije za linearne i nelinearne funkcije graničnog stanja. *Zbornika radova Građevinskog fakulteta Sveučilišta u Rijeci. Knjiga XVI*, 205-221, Rijeka, 2013
- [7] Krolo, Paulina; Čaušević, Mehmed; Bulić, Mladen. Analiza čelične okvirne konstrukcije na potresna djelovanja. Zbornik sažetaka/Zajednički temelji-Prvi skup mladih istraživača iz područja građevinarstva, arhitekture, geodezije i elektrotehnike/ Divić, Vladimir; Trogrlić, Boris; Gotovac, Hrvoje (ur.), 33-34, Split, 2013
- [8] Katavić, Paulina; Bulić, Mladen; Čaušević, Mehmed. Aerodinamika visokog čeličnog stupa nosača rasvjete prema Europskoj normi. *Zbornik radova Građevinskog fakulteta Sveučilišta u Rijeci*. Knjiga XII, 255-282, Rijeka, 2009